The BMP antagonist noggin regulates cranial suture fusion (original) (raw)

References

  1. Slavkin, H. C. Developmental Craniofacial Biology (Lea & Febiger, Philadelphia, 1979)
    Google Scholar
  2. Thilander, B. Basic mechanisms in craniofacial growth. Acta Odontol. Scand. 53, 144–151 (1995)
    Article CAS Google Scholar
  3. McCarthy, J. G., Epstein, F. J. & Wood-Smith, D. in Plastic Surgery (ed. McCarthy, J. G.) 3013–3053 (W.B. Saunders Co., Philadelphia, 1990)
    Google Scholar
  4. Cohen, M. M. Jr Craniosynostoses: phenotypic/molecular correlations. Am. J. Med. Genet. 56, 334–339 (1995)
    Article Google Scholar
  5. Wilkie, A. O. M. Craniosynostosis: genes and mechanisms. Hum. Mol. Genet. 6, 1647–1656 (1997)
    Article CAS Google Scholar
  6. Brunet, L. J., McMahon, J. A., McMahon, A. P. & Harland, R. M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455–1457 (1998)
    Article ADS CAS Google Scholar
  7. McMahon, J. A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452 (1998)
    Article CAS Google Scholar
  8. Capdevila, J. & Johnson, R. L. Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev. Biol. 197, 205–217 (1998)
    Article CAS Google Scholar
  9. Warren, S. M. et al. New developments in cranial suture research. Plast. Reconstr. Surg. 107, 523–540 (2001)
    Article CAS Google Scholar
  10. Opperman, L. A., Nolen, A. A. & Ogle, R. C. TGF-beta 1, TGF-beta 2, and TGF-beta 3 exhibit distinct patterns of expression during cranial suture formation and obliteration in vivo and in vitro. J. Bone Miner. Res. 12, 301–310 (1997)
    Article CAS Google Scholar
  11. Greenwald, J. A. et al. Regional differentiation of cranial suture-associated dura mater in vivo and in vitro: implications for suture fusion and patency. J. Bone Miner. Res. 15, 2413–2430 (2000)
    Article CAS Google Scholar
  12. Wozney, J. M. et al. Novel regulators of bone formation: Molecular clones and activities. Science 242, 1528–1534 (1988)
    Article ADS CAS Google Scholar
  13. Wang, E. A. et al. Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl Acad. Sci. USA 87, 2220–2224 (1990)
    Article ADS CAS Google Scholar
  14. Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996)
    Article CAS Google Scholar
  15. Hsu, D. R., Economides, A. N., Wang, X., Eimon, P. M. & Harland, R. M. The Xenopus dorsalizing factor gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1, 673–683 (1998)
    Article CAS Google Scholar
  16. Capdevila, J., Tsukui, T., Rodriquez Esteban, C., Zappavigna, V. & Izpisua Belmonte, J. C. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by gremlin. Mol. Cell 4, 839–849 (1999)
    Article CAS Google Scholar
  17. Minabe-Saegusa, C., Saegusa, H., Tsukahara, M. & Noguchi, S. Sequence and expression of a novel mouse gene PRDC (protein related to DAN and cerberus) identified by a gene trap approach. Dev. Growth Differ. 40, 343–353 (1998)
    Article CAS Google Scholar
  18. Brunkow, M. E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001)
    Article CAS Google Scholar
  19. Gazzerro, E., Gangji, V. & Canalis, E. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J. Clin. Invest. 102, 2106–2114 (1998)
    Article CAS Google Scholar
  20. Greenwald, J. A. et al. In vivo modulation of FGF biological activity alters cranial suture fate. Am. J. Pathol. 158, 441–452 (2001)
    Article CAS Google Scholar
  21. Moore, R., Ferretti, P., Copp, A. & Thorogood, P. Blocking endogenous FGF-2 activity prevents cranial osteogenesis. Dev. Biol. 243, 99–114 (2002)
    Article CAS Google Scholar
  22. Mansukhani, A., Bellosta, P., Sahni, M. & Basilico, C. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J. Cell Biol. 149, 1297–1308 (2000)
    Article CAS Google Scholar
  23. Bradley, J. P. et al. Studies in cranial suture biology: in vitro cranial suture fusion. Cleft Palate–Craniofac. J. 33, 150–156 (1996)
    Article CAS Google Scholar
  24. Dixon, M. E., Armstrong, P., Stevens, D. B. & Bamshad, M. Identical mutations in NOG can cause either tarsal/carpal coalition syndrome or proximal symphalagism. Gen. Med. 3, 349–353 (2001)
    CAS Google Scholar
  25. Roth, D. A. et al. Studies in cranial suture biology. I. Increased immunoreactivity for transforming growth factor-beta (β1, β2, β3) during rat cranial suture fusion. J. Bone Miner. Res. 12, 311–321 (1997)
    Article CAS Google Scholar
  26. Bradley, J. P., Levine, J. P., Roth, D. A., McCarthy, J. G. & Longaker, M. T. Studies in cranial suture biology. IV. Temporal sequence of posterior frontal cranial suture fusion in the mouse. Plast. Reconstr. Surg. 98, 1039–1045 (1996)
    Article CAS Google Scholar
  27. Albrecht, U., Helms, J. A. & Lin, H. in Molecular and Cellular Methods in Developmental Toxicology (ed. Daston, G. P.) 23–48 (CRC Press, Boca Raton, 1997)
    Google Scholar
  28. Paine-Saunders, S., Viviano, B. L., Economides, A. N. & Saunders, S. Heparan sulfate proteoglycans retain noggin at the cell surface: A potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem. 277, 2089–2096 (2002)
    Article CAS Google Scholar

Download references