RecBCD enzyme is a bipolar DNA helicase (original) (raw)

References

  1. Arnold, D. A. & Kowalczykowski, S. C. in Encyclopedia of Life Sciences http://www.els.net (Nature Publishing Group, London, 1999)
    Google Scholar
  2. Phillips, R. J., Hickleton, D. C., Boehmer, P. E. & Emmerson, P. T. The RecB protein of Escherichia coli translocates along single-stranded DNA in the 3′ to 5′ direction: a proposed ratchet mechanism. Mol. Gen. Genet. 254, 319–329 (1997)
    CAS PubMed Google Scholar
  3. Yu, M., Souaya, J. & Julin, D. A. The 30-kDa C-terminal domain of the RecB protein is critical for the nuclease activity, but not the helicase activity, of the RecBCD enzyme from Escherichia coli. Proc. Natl Acad. Sci. USA 95, 981–986 (1998)
    Article ADS CAS PubMed PubMed Central Google Scholar
  4. Bianco, P. R. & Kowalczykowski, S. C. Step size measurements on the translocation mechanism of the RecBC DNA helicase. Nature 405, 368–372 (2000)
    Article ADS CAS PubMed Google Scholar
  5. Dixon, D. A. & Kowalczykowski, S. C. The recombination hotspot Chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73, 87–96 (1993)
    Article CAS PubMed Google Scholar
  6. Bianco, P. R. & Kowalczykowski, S. C. The recombination hotspot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5′-GCTGGTGG-3′. Proc. Natl Acad. Sci. USA 94, 6706–6711 (1997)
    Article ADS CAS PubMed PubMed Central Google Scholar
  7. Anderson, D. G. & Kowalczykowski, S. C. The recombination hot spot Chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev. 11, 571–581 (1997)
    Article CAS PubMed Google Scholar
  8. Anderson, D. G. & Kowalczykowski, S. C. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a Chi-regulated manner. Cell 90, 77–86 (1997)
    Article CAS PubMed Google Scholar
  9. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. & Rehrauer, W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465 (1984)
    Article Google Scholar
  10. Zhang, X. J. & Julin, D. A. Isolation and characterization of the C-terminal nuclease domain from the RecB protein of Escherichia coli. Nucleic Acids Res. 27, 4200–4207 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  11. Roman, L. J., Eggleston, A. K. & Kowalczykowski, S. C. Processivity of the DNA helicase activity of Escherichia coli RecBCD enzyme. J. Biol. Chem. 267, 4207–4214 (1992)
    Article CAS PubMed Google Scholar
  12. Chen, H. W., Ruan, B., Yu, M., Wang, J. & Julin, D. A. The RecD subunit of the RecBCD enzyme from Escherichia coli is a single-stranded DNA-dependent ATPase. J. Biol. Chem. 272, 10072–10079 (1997)
    Article CAS PubMed Google Scholar
  13. Boehmer, P. E. & Emmerson, P. T. Escherichia coli RecBCD enzyme: inducible overproduction and reconstitution of the ATP-dependent deoxyribonuclease from purified subunits. Gene 102, 1–6 (1991)
    Article CAS PubMed Google Scholar
  14. Chen, H.-W., Randle, D. E., Gabbidon, M. & Julin, D. A. Functions of the ATP hydrolysis subunits (RecB and RecD) in the nuclease reactions catalyzed by the RecBCD enzyme from Escherichia coli. J. Mol. Biol. 278, 89–104 (1998)
    Article CAS PubMed Google Scholar
  15. Taylor, A. F. & Smith, G. R. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature XXX, XXX–XXX (2003)
    Google Scholar
  16. Lahue, E. E. & Matson, S. W. Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction. J. Biol. Chem. 263, 3208–3215 (1998)
    Article Google Scholar
  17. Jongeneel, C. V., Formosa, T. & Alberts, B. M. Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J. Biol. Chem. 259, 12925–12932 (1984)
    Article CAS PubMed Google Scholar
  18. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999)
    Article CAS PubMed Google Scholar
  19. Morris, P. D. & Raney, K. D. DNA helicases displace streptavidin from biotin-labeled oligonucleotides. Biochemistry 38, 5164–5171 (1999)
    Article CAS PubMed Google Scholar
  20. Dillingham, M. S., Wigley, D. B. & Webb, M. R. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39, 205–212 (2000)
    Article CAS PubMed Google Scholar
  21. Dillingham, M. S., Wigley, D. B. & Webb, M. R. Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine. Biochemistry 41, 643–651 (2002)
    Article CAS PubMed Google Scholar
  22. Singleton, M. R. & Wigley, D. B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriology 184, 1819–1826 (2002)
    Article CAS Google Scholar
  23. Ganesan, S. & Smith, G. R. Strand-specific binding to duplex DNA ends by the subunits of the Escherichia coli RecBCD enzyme. J. Mol. Biol. 229, 67–78 (1993)
    Article CAS PubMed Google Scholar
  24. Korangy, F. & Julin, D. A. Kinetics and processivity of ATP hydrolysis and DNA unwinding by the RecBC enzyme from Escherichia coli. Biochemistry 32, 4873–4880 (1993)
    Article CAS PubMed Google Scholar
  25. Taylor, A. F. & Smith, G. R. Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22, 447–457 (1980)
    Article CAS PubMed Google Scholar
  26. van Brabant, A. J., Stan, R. & Ellis, N. A. DNA helicases, genomic instability, and human genetic disease. Annu. Rev. Genom. Hum. Genet. 1, 409–459 (2000)
    Article CAS Google Scholar
  27. Korangy, F. & Julin, D. A. Alteration by site-directed mutagenesis of the conserved lysine residue in the ATP-binding consensus sequence of the RecD subunit of the Escherichia coli RecBCD enzyme. J. Biol. Chem. 267, 1727–1732 (1991)
    Article Google Scholar
  28. Hsieh, S. & Julin, D. A. Alteration by site-directed mutagenesis of the conserved lysine residue in the consensus ATP-binding sequence of the RecB protein of Escherichia coli. Nucleic Acids Res. 20, 5647–5653 (1992)
    Article CAS PubMed PubMed Central Google Scholar
  29. Kreuzer, K. N. & Jongeneel, C. V. Escherichia coli phage T4 topoisomerase. Methods Enzymol. 100, 144–160 (1983)
    Article CAS PubMed Google Scholar
  30. Arnold, D. A., Bianco, P. R. & Kowalczykowski, S. C. The reduced levels of Chi recognition exhibited by the RecBC1004D enzyme reflect its recombination defect in vivo. J. Biol. Chem. 273, 16476–16486 (1998)
    Article CAS PubMed Google Scholar

Download references