Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function (original) (raw)

References

  1. Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000)
    Google Scholar
  2. Stupack, D. G. & Cheresh, D. A. ECM remodeling regulates angiogenesis: Endothelial integrins look for new ligands. Sci. STKE 119, PE7 (2002)
    Google Scholar
  3. Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264, 569–571 (1994)
    Google Scholar
  4. Brooks, P. C. et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994)
    Google Scholar
  5. Friedlander, M. et al. Definition of two angiogenic pathways by distinct αv integrins. Science 270, 1500–1502 (1995)
    Google Scholar
  6. George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993)
    Google Scholar
  7. Francis, S. E. et al. Central roles of α5β1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler. Thromb. Vasc. Biol. 22, 927–933 (2002)
    Google Scholar
  8. Bader, B. L., Rayburn, H., Crowley, D. & Hynes, R. O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95, 507–519 (1998)
    Google Scholar
  9. Stupack, D. G., Puente, X. S., Boutsaboualoy, S., Storgard, C. M. & Cheresh, D. A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 155, 459–470 (2001)
    Google Scholar
  10. Hynes, R. O. Integrins: Bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002)
    Google Scholar
  11. Kiosses, W. B., Shattil, S. J., Pampori, N. & Schwartz, M. A. Rac recruits high-affinity integrin αvβ3 to lamellipodia in endothelial cell migration. Nature Cell Biol. 3, 316–320 (2001)
    Google Scholar
  12. Martin-Bermudo, M. D., Dunin-Borkowski, O. M. & Brown, N. H. Modulation of integrin activity is vital for morphogenesis. J. Cell Biol. 141, 1073–1081 (1998)
    Google Scholar
  13. Tzima, E., del Pozo, M. A., Shattil, S. J., Chien, S. & Schwartz, M. A. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20, 4639–4647 (2001)
    Google Scholar
  14. Byzova, T. V. et al. A mechanism for modulation of cellular responses to VEGF: Activation of the integrins. Mol. Cell 6, 851–860 (2000)
    Google Scholar
  15. Trusolino, L. et al. Growth factor-dependent activation of αvβ3 integrin in normal epithelial cells: Implications for tumor invasion. J. Cell Biol. 142, 1145–1156 (1998)
    Google Scholar
  16. Neufeld, G. et al. The neuropilins: Multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 12, 13–19 (2002)
    Google Scholar
  17. Pasterkamp, R. J. & Kolodkin, A. L. Semaphorin junction: Making tracks toward neural connectivity. Curr. Opin. Neurobiol. 13, 79–89 (2003)
    Google Scholar
  18. Miao, H. Q. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell. Biol. 146, 233–242 (1999)
    Google Scholar
  19. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895–4902 (1999)
    Google Scholar
  20. Garlanda, C. & Dejana, E. Heterogeneity of endothelial cells. Specific markers. Arterioscler. Thromb. Vasc. Biol. 17, 1193–1202 (1997)
    Google Scholar
  21. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Rev. Mol. Cell Biol. 2, 793–805 (2001)
    Google Scholar
  22. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001)
    Google Scholar
  23. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999)
    Google Scholar
  24. Brooks, P. C. et al. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822 (1995)
    Google Scholar
  25. Kim, S., Bell, K., Mousa, S. A. & Varner, J. A. Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am. J. Pathol. 156, 1345–1362 (2000)
    Google Scholar
  26. Pampori, N. et al. Mechanisms and consequences of affinity modulation of integrin α(V)β(3) detected with a novel patch-engineered monovalent ligand. J. Biol. Chem. 274, 21609–21616 (1999)
    Google Scholar
  27. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: A physically integrated molecular process. Cell 84, 359–369 (1996)
    Google Scholar
  28. Gu, J. et al. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J. Cell Biol. 146, 389–403 (1999)
    Google Scholar
  29. Evans, H. M. On the development of the aortae, cardinal and umbilical veins, and the other blood vessels of vertebrate embryos from capillaries. Anat. Rec. 3, 498–518 (1909)
    Google Scholar
  30. Sabin, F. R. Origin and development of the primitive vessels of the chick and of the pig. Contrib. Embryol. Carnegie Inst. Wash. 6, 61–124 (1917)
    Google Scholar
  31. Logan, M. & Tabin, C. Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses. Methods 14, 407–420 (1998)
    Google Scholar
  32. Seifert, R., Zhao, B. & Christ, B. Cytokinetic studies on the aortic endothelium and limb bud vascularization in avian embryos. Anat. Embryol. (Berl.) 186, 601–610 (1992)
    Google Scholar
  33. Cruz, M. T., Dalgard, C. L. & Ignatius, M. J. Functional partitioning of β1 integrins revealed by activating and inhibitory mAbs. J. Cell Sci. 110, 2647–2659 (1997)
    Google Scholar
  34. Neugebauer, K. M. & Reichardt, L. F. Cell-surface regulation of β1-integrin activity on developing retinal neurons. Nature 350, 68–71 (1991)
    Google Scholar
  35. Taniguchi, M. et al. Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19, 519–530 (1997)
    Google Scholar
  36. Behar, O., Golden, J. A., Mashimo, H., Schoen, F. J. & Fishman, M. C. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383, 525–528 (1996)
    Google Scholar
  37. Sigmund, C. D. Viewpoint: Are studies in genetically altered mice out of control? Arterioscler. Thromb. Vasc. Biol. 20, 1425–1429 (2000)
    Google Scholar
  38. Feiner, L. et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128, 3061–3070 (2001)
    Google Scholar
  39. Robson, P., Pichla, S., Zhou, B. & Baldwin, H. S. in Assembly of the Vasculature and its Regulation (ed. Tomanek, R. J.) 97–110 (Birkhauser, Boston, 2002)
    Google Scholar
  40. Brown, C. B. et al. PlexinA2 and semaphorin signaling during cardiac neural crest development. Development 128, 3071–3080 (2001)
    Google Scholar
  41. Tse, C., Xiang, R. H., Bracht, T. & Naylor, S. L. Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Res. 62, 542–546 (2002)
    Google Scholar
  42. Xiang, R. et al. Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Res. 62, 2637–2643 (2002)
    Google Scholar
  43. Cho, S. Y. & Klemke, R. L. Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J. Cell Biol. 156, 725–736 (2002)
    Google Scholar
  44. Kullander, K. & Klein, R. Mechanisms and functions of eph and ephrin signalling. Nature Rev. Mol. Cell Biol. 3, 475–486 (2002)
    Google Scholar
  45. Miao, H., Burnett, E., Kinch, M., Simon, E. & Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nature Cell Biol. 2, 62–69 (2000)
    Google Scholar
  46. Grignani, F. et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 58, 14–19 (1998)
    Google Scholar
  47. Primo, L., Roca, C., Ferrandi, C., Lanfrancone, L. & Bussolino, F. Human endothelial cells expressing polyoma middle T induce tumors. Oncogene 19, 3632–3641 (2000)
    Google Scholar
  48. Hamburger, V. & Hamilton, H. L. A series of normal stages in development of the chick embryo. J. Morphol. 88, 49–92 (1951)
    Google Scholar
  49. Adams, R. H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: Demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999)
    Google Scholar

Download references