Complex between nidogen and laminin fragments reveals a paradigmatic β-propeller interface (original) (raw)
Hynes, R. O. & Zhao, Q. The evolution of cell adhesion. J. Cell Biol.150, F89–F96 (2000) ArticleCAS Google Scholar
Mayer, U., Kohfeldt, E. & Timpl, R. Structural and genetic analysis of laminin–nidogen interaction. Ann. N.Y. Acad. Sci.857, 130–142 (1998) ArticleADSCAS Google Scholar
Timpl, R. in Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins (eds Kreis, T. & Vale, R. D.) 455–457 (Oxford Univ. Press, 1999) Google Scholar
Willem, M. et al. Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development129, 2711–2722 (2002) CASPubMed Google Scholar
Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein–protein recognition sites. J. Mol. Biol.285, 2177–2198 (1999) ArticleCAS Google Scholar
Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70, 11–19 (2002) ArticleCAS Google Scholar
Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet.72, 763–771 (2003) ArticleCAS Google Scholar
Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107, 513–523 (2001) ArticleCAS Google Scholar
Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346, 1513–1521 (2002) ArticleCAS Google Scholar
Rudenko, G. et al. Structure of the LDL receptor extracellular domain at endosomal pH. Science298, 2353–2358 (2002) ArticleADSCAS Google Scholar
Springer, T. A. An extracellular β-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. J. Mol. Biol.283, 837–862 (1998) ArticleCAS Google Scholar
Mayer, U. et al. A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J.12, 1879–1885 (1993) ArticleCAS Google Scholar
Poschl, E., Fox, J. W., Block, D., Mayer, U. & Timpl, R. Two non-contiguous regions contribute to nidogen binding to a single EGF-like motif of the laminin gamma 1 chain. EMBO J.13, 3741–3747 (1994) ArticleCAS Google Scholar
Poschl, E. et al. Site-directed mutagenesis and structural interpretation of the nidogen binding site of the laminin γ1 chain. EMBO J.15, 5154–5159 (1996) ArticleCAS Google Scholar
Murshed, M. et al. The absence of nidogen 1 does not affect murine basement membrane formation. Mol. Cell. Biol.20, 7007–7012 (2000) ArticleCAS Google Scholar
Dong, L. et al. Neurologic defects and selective disruption of basement membranes in mice lacking entactin-1/nidogen-1. Lab. Invest.82, 1617–1630 (2002) ArticleCAS Google Scholar
Schymeinsky, J. et al. Gene structure and functional analysis of the mouse nidogen-2 gene: Nidogen-2 is not essential for basement membrane formation in mice. Mol. Cell. Biol.22, 6820–6830 (2002) ArticleCAS Google Scholar
Stetefeld, J., Mayer, U., Timpl, R. & Huber, R. Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin γ1 chain harboring the nidogen binding site. J. Mol. Biol.257, 644–657 (1996) ArticleCAS Google Scholar
Baumgartner, R. et al. Structure of the nidogen binding LE module of the laminin γ1 chain in solution. J. Mol. Biol.257, 658–668 (1996) ArticleCAS Google Scholar
Bork, P., Downing, A. K., Kieffer, B. & Campbell, I. D. Structure and distribution of modules in extracellular proteins. Q. Rev. Biophys.29, 119–167 (1996) ArticleCAS Google Scholar
Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol.234, 946–950 (1993) ArticleCAS Google Scholar
Mayer, U., Mann, K., Fessler, L. I., Fessler, J. H. & Timpl, R. Drosophila laminin binds to mammalian nidogen and to heparan sulfate proteoglycan. Eur. J. Biochem.245, 745–750 (1997) ArticleCAS Google Scholar
Jeon, H. et al. Implications for familial hypercholesterolemia from structure of the LDL receptor YWTD-EGF domain pair. Nature Struct. Biol.8, 499–504 (2001) ArticleCAS Google Scholar
Herz, J. & Bock, H. H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem.71, 405–434 (2002) ArticleCAS Google Scholar
Strickland, D. K., Gonias, S. L. & Argraves, W. S. Diverse roles for the LDL receptor family. Trends Endocrinol. Metab.13, 66–74 (2002) ArticleCAS Google Scholar
Kohfeldt, E., Maurer, P., Vannahme, C. & Timpl, R. Properties of the extracellular calcium binding module of the proteoglycan testican. FEBS Lett.414, 557–561 (1997) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
Navaza, J. Amore: An automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994) Article Google Scholar
Brunger, A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticleCAS Google Scholar
Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol.234, 779–815 (1993) ArticleCAS Google Scholar