Replication of a cis–syn thymine dimer at atomic resolution (original) (raw)

References

  1. Ravanat, J. L., Douki, T. & Cadet, J. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B 63, 88–102 (2001)
    Article CAS Google Scholar
  2. Masutani, C., Kusumoto, R., Iwai, S. & Hanaoka, F. Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J. 19, 3100–3109 (2000)
    Article CAS Google Scholar
  3. Johnson, R. E., Washington, M. T., Prakash, S. & Prakash, L. Fidelity of human DNA polymerase η. J. Biol. Chem. 275, 7447–7450 (2000)
    Article CAS Google Scholar
  4. Lehmann, A. R. Replication of damaged DNA in mammalian cells: new solutions to an old problem. Mutat. Res. 509, 23–34 (2002)
    Article CAS Google Scholar
  5. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999)
    Article ADS CAS Google Scholar
  6. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999)
    Article CAS Google Scholar
  7. Thoma, F. Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. EMBO J. 18, 6585–6598 (1999)
    Article CAS Google Scholar
  8. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001)
    Article ADS CAS Google Scholar
  9. Ohmori, H. et al. The Y-family of DNA polymerases. Mol. Cell 8, 7–8 (2001)
    Article CAS Google Scholar
  10. Yang, W. Damage repair DNA polymerases Y. Curr. Opin. Struct. Biol. 13, 23–30 (2003)
    Article CAS Google Scholar
  11. Ling, H., Boudsoçq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001)
    Article CAS Google Scholar
  12. Boudsocq, F., Iwai, S., Hanaoka, F. & Woodgate, R. Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DNA polymerase with properties akin to eukaryotic Pol η. Nucleic Acids Res. 29, 4607–4616 (2001)
    Article CAS Google Scholar
  13. Patel, P. H., Suzuki, M., Adman, E., Shinkai, A. & Loeb, L. A. Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection. J. Mol. Biol. 308, 823–837 (2001)
    Article CAS Google Scholar
  14. Glick, E., Vigna, K. L. & Loeb, L. A. Mutations in human DNA polymerase η motif II alter bypass of DNA lesions. EMBO J. 20, 7303–7312 (2001)
    Article CAS Google Scholar
  15. Park, J. Y. & Choi, B. S. NMR investigation of echinomycin binding to d(ACGTTAACGT)2: Hoogsteen versus Watson-Crick A.T base pairing between echinomycin binding sites. J. Biochem. (Tokyo) 118, 989–995 (1995)
    Article CAS Google Scholar
  16. Aishima, J. et al. A Hoogsteen base pair embedded in undistorted B-DNA. Nucleic Acids Res. 30, 5244–5252 (2002)
    Article CAS Google Scholar
  17. Patikoglou, G. A. et al. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev. 13, 3217–3230 (1999)
    Article CAS Google Scholar
  18. Bunting, K. A. et al. Crystal structure of the Escherichia coli dcm very-short-patch DNA repair endonuclease bound to its reaction product-site in a DNA superhelix. Nucleic Acids Res. 31, 1633–1639 (2003)
    Article CAS Google Scholar
  19. Park, H. et al. Crystal structure of a DNA decamer containing a cis_–_syn thymine dimer. Proc. Natl Acad. Sci. USA 99, 15965–15970 (2002)
    Article ADS CAS Google Scholar
  20. Zhang, H. & Siede, W. UV-induced T → C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase η in vivo. Nucleic Acids Res. 30, 1262–1267 (2002)
    Article CAS Google Scholar
  21. Szekeres, E. S. Jr, Woodgate, R. & Lawrence, C. W. Substitution of mucAB or rumAB for umuDC alters the relative frequencies of the two classes of mutations induced by a site-specific T-T cyclobutane dimer and the efficiency of translesion DNA synthesis. J. Bacteriol. 178, 2559–2563 (1996)
    Article CAS Google Scholar
  22. Trincao, J. et al. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol. Cell 8, 417–426 (2001)
    Article CAS Google Scholar
  23. Washington, M. T., Prakash, L., Prakash, S. & Yeast, D. N. A. polymerase η utilizes an induced-fit mechanism of nucleotide incorporation. Cell 107, 917–927 (2001)
    Article CAS Google Scholar
  24. Zhou, B. L., Pata, J. D. & Steitz, T. A. Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol. Cell 8, 427–437 (2001)
    Article CAS Google Scholar
  25. Silvian, L. F., Toth, E. A., Pham, P., Goodman, M. F. & Ellenberger, T. Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nature Struct. Biol. 8, 984–989 (2001)
    Article CAS Google Scholar
  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    Article CAS Google Scholar
  27. Brünger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article Google Scholar
  28. Jones, T. A., Zou, J.-Y. & Cowan, S. W. Improved methods for building models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  29. Vassylyev, D. G. et al. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell 83, 773–782 (1995)
    Article CAS Google Scholar
  30. Cohen, G. E. ALIGN: a program to superimpose protein coordinates. J. Appl. Crystallogr. 30, 1160–1161 (1997)
    Article ADS CAS Google Scholar

Download references