A structural state of the myosin V motor without bound nucleotide (original) (raw)

References

  1. Holmes, K. C. & Geeves, M. A. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–728 (1999)
    Article Google Scholar
  2. Houdusse, A. & Sweeney, H. L. Myosin motors: missing structures and hidden springs. Curr. Opin. Struct. Biol. 11, 182–194 (2001)
    Article CAS Google Scholar
  3. Mehta, A. D. E. et al. Myosin V is a processive actin-based motor. Nature 400, 590–593 (1999)
    Article ADS CAS Google Scholar
  4. Purcell, T. J., Morris, C., Spudich, J. A. & Sweeney, H. L. Role of the lever arm in the processive stepping of myosin V. Proc. Natl Acad. Sci. USA 99, 14159–14164 (2002)
    Article ADS CAS Google Scholar
  5. Titus, M. A. Myosin V—the multi-purpose transport motor. Curr. Biol. 7, R301–R304 (1997)
    Article CAS Google Scholar
  6. De La Cruz, E. M., Wells, A. L., Safer, D., Ostap, E. M. & Sweeney, H. L. The kinetic mechanism of myosin V. Proc. Natl Acad. Sci. USA 96, 13726–13731 (1999)
    Article ADS CAS Google Scholar
  7. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998)
    Article CAS Google Scholar
  8. Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Gyorgyi, A. G. & Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999)
    Article CAS Google Scholar
  9. Whittaker, M. et al. A 35 Å movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995)
    Article ADS CAS Google Scholar
  10. Fisher, A. J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34, 8960–8972 (1995)
    Article CAS Google Scholar
  11. Kollmar, M., Durrwang, U., Kliche, W., Manstein, D. J. & Kull, F. J. Crystal structure of the motor domain of a class-I myosin. EMBO J. 21, 2517–2525 (2002)
    Article CAS Google Scholar
  12. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: A molecular motor. Science 261, 50–58 (1993)
    Article ADS CAS Google Scholar
  13. Bauer, C. B., Holden, H. M., Thoden, J. B., Smith, R. & Rayment, I. X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J. Biol. Chem. 275, 38494–38499 (2000)
    Article CAS Google Scholar
  14. Coates, J. H., Criddle, A. H. & Geeves, M. A. Pressure-relaxation studies of pyrene-labelled actin and myosin subfragment-1 from rabbit skeletal muscle. Biochem. 232, 351–356 (1985)
    Article CAS Google Scholar
  15. De La Cruz, E. M., Wells, A. L., Sweeney, H. L. & Ostap, E. M. Actin and light chain isoform dependence of myosin V kinetics. Biochemistry 39, 14196–14202 (2000)
    Article CAS Google Scholar
  16. Taylor, E. W. Kinetic studies on the association and dissociation of myosin subfragment 1 and actin. J. Biol. Chem. 266, 294–302 (1991)
    CAS PubMed Google Scholar
  17. Sasaki, N., Ohkura, R. & Sutoh, K. Insertion or deletion of a single residue in the strut sequence of _Dictyostelium_myosin II abolishes strong binding to actin. J. Biol. Chem. 275, 38705–38709 (2000)
    Article CAS Google Scholar
  18. Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–61 (1993)
    Article ADS CAS Google Scholar
  19. Volkmann, N. et al. Evidence for cleft closure in actomyosin upon ADP release. Nature Struct. Biol. 7, 1147–1155 (2000)
    Article CAS Google Scholar
  20. Yengo, C. M., De La Cruz, E. M., Chrin, L. R., Gaffney, D. P. II & Berger, C. L. Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J. Biol. Chem. 277, 24114–24119 (2002)
    Article CAS Google Scholar
  21. Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep. 3, 1035–1041 (2002)
    Article CAS Google Scholar
  22. Sasaki, N., Asukagawa, H., Yasuda, R., Hiratsuka, T. & Sutoh, K. Deletion of the myopathy loop of Dictyostelium myosin II and its impact on motor functions. J. Biol. Chem. 274, 37840–37844 (1999)
    Article CAS Google Scholar
  23. Yengo, C. M., De la Cruz, E. M., Safer, D., Ostap, E. M. & Sweeney, H. L. Kinetic characterization of the weak binding states of myosin V. Biochemistry 41, 8508–8517 (2002)
    Article CAS Google Scholar
  24. Spudich, J. A. How molecular motors work. Nature 372, 515–518 (1994)
    Article ADS CAS Google Scholar
  25. Joel, P. B., Trybus, K. M. & Sweeney, H. L. Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation. J. Biol. Chem. 276, 2998–3003 (2001)
    Article CAS Google Scholar
  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 (1997)
    Article CAS Google Scholar
  27. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Article Google Scholar
  28. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  29. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)
    Article CAS Google Scholar
  30. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)
    Article Google Scholar

Download references