Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide (original) (raw)

References

  1. Lymn, R. W. & Taylor, E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10, 4617–4624 (1971)
    Article CAS Google Scholar
  2. Geeves, M. A. & Holmes, K. C. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–727 (1999)
    Article CAS Google Scholar
  3. Rayment, I. et al. Structure of the actin–myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993)
    Article ADS CAS Google Scholar
  4. Schröder, R. R. et al. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364, 171–174 (1993)
    Article ADS Google Scholar
  5. Volkmann, N. et al. Myosin isoforms show unique conformations in the actin-bound state. Proc. Natl Acad. Sci. USA 100, 3227–3232 (2003)
    Article ADS CAS Google Scholar
  6. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993)
    Article ADS CAS Google Scholar
  7. Smith, C. A. & Rayment, I. X-ray structure of the magnesium(ii).ADP.vanadate complex of the Dictyostelium_–_Discoideum myosin motor domain to 1.9 Å resolution. Biochemistry 35, 5404–5417 (1996)
    Article CAS Google Scholar
  8. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998)
    Article CAS Google Scholar
  9. Angert, I., Majorovits, E. & Schröder, R. R. Zero-loss image formation and modified contrast transfer theory in EFTEM. Ultramicroscopy 81, 203–222 (2000)
    Article CAS Google Scholar
  10. Geeves, M. A. & Conibear, P. B. The role of three-state docking of myosin S1 with actin in force generation. Biophys. J. 68, 194S–201S (1995)
    CAS PubMed PubMed Central Google Scholar
  11. Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990)
    Article CAS Google Scholar
  12. Sweeney, H. L., Straceski, A. J., Leinwand, L. A., Tikunov, B. A. & Faust, L. Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J. Biol. Chem. 269, 1603–1605 (1994)
    CAS PubMed Google Scholar
  13. Sasaki, N., Asukagawa, H., Yasuda, R., Hiratsuka, T. & Sutoh, K. Deletion of the myopathy loop of Dictyostelium myosin II and its impact on motor functions. J. Biol. Chem. 274, 37840–37844 (1999)
    Article CAS Google Scholar
  14. Volkmann, N. et al. Evidence for cleft closure in actomyosin upon ADP release. Nature Struct. Biol. 7, 1147–1155 (2000)
    Article CAS Google Scholar
  15. Yengo, C. M., De la Cruz, E. M., Chrin, L. R., Gaffney, D. P. & Berger, C. L. Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J. Biol. Chem. 277, 24114–24119 (2002)
    Article CAS Google Scholar
  16. Conibear, P. B., Bagshaw, C. R., Fajer, P., Kovacs, M. & Malnasi-Csizmadia, A. Myosin cleft movement and its coupling to actomyosin dissociation. Nature Struct. Biol. (in the press)
  17. Coureux, P.-D. et al. A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423 (2003)
    Article ADS CAS Google Scholar
  18. Reubold, T., Eschenburg, S., Becker, A., Kull, F. J. & Manstein, D. J. A structural model for actin-induced nucleotide release in myosin. Nature Struct. Biol. (in the press)
  19. Kull, F. J., Vale, R. D. & Fletterick, R. J. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J. Muscle Res. Cell Motil. 19, 877–886 (1998)
    Article CAS Google Scholar
  20. Naber, N. et al. Closing of the nucleotide binding pocket of kinesin-family motors upon binding to microtubules. Science 300, 798–801 (2003)
    Article ADS CAS Google Scholar
  21. Margossian, S. S. & Lowey, S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 85, 55–71 (1982)
    Article CAS Google Scholar
  22. Spudich, J. A. & Watt, S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin–troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971)
    CAS PubMed Google Scholar
  23. Jahn, W. Easily prepared holey films for use in cryo-electron microscopy. J. Microsc. 179, 333–334 (1995)
    Article Google Scholar
  24. Löbau, V. Neue Wege in der Kryo-Präparation: Die Kontroller-gesteuerte Einfrierapparatur. Thesis, Univ. Stuttgart (1997)
    Google Scholar
  25. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)
    Article CAS Google Scholar
  26. Egelmann, E. H. A robust algorithm for the reconstruction of helical filaments using single particle methods. Ultramicroscopy 85, 225–234 (2000)
    Article Google Scholar
  27. Schroeder, R. R., Angert, I., Frank, J. & Holmes, K. C. Multivariate statistical analysis and tomographic processing of helical objects. Proc. 15th Int. Congr. Elec. Microsc. 3, 443–444 (2002)
    Google Scholar
  28. Yagle, A. E. in Discrete Tomography (eds Herman, G. T. & Kuba, A.) (Birkhäuser, Boston, 1999)
    MATH Google Scholar
  29. Esnouf, R. M. Further additions to Molscript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999)
    Article CAS Google Scholar
  30. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)
    Article Google Scholar
  31. Merritt, E. & Bacon, D. Raster 3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)
    Article CAS Google Scholar

Download references