Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds (original) (raw)

References

  1. Sharp, P. J. & Follett, B. K. The effect of hypothalamic lesions on gonadotrophin release in Japanese quail (Coturnix coturnix japonica). Neuroendocrinology 5, 205–218 (1969)
    Article CAS Google Scholar
  2. Davies, D. T. & Follett, B. K. The neuroendocrine control of gonadotrophin release in Japanese quail. I. The role of the tuberal hypothalamus. Proc. R. Soc. Lond. B 191, 303–315 (1975)
    Article ADS CAS Google Scholar
  3. Ohta, M. & Homma, K. Detection of neural connections to the infundibular complex by partial or complete hypothalamic deafferentation in male quail. Gen. Comp. Endocrinol. 68, 286–292 (1987)
    Article CAS Google Scholar
  4. Juss, T. S. in Avian Endocrinology (ed. Sharp, P. J.) 47–60 (Soc. Endocrinol., Bristol, 1993)
    Google Scholar
  5. Konishi, H., Foster, R. G. & Follett, B. K. Evidence for a daily rhythmicity in the acute release of LH in response to electrical stimulation in the Japanese quail. J. Comp. Physiol. A 161, 315–319 (1987)
    Article CAS Google Scholar
  6. Ohta, M., Wada, M. & Homma, K. Induction of rapid testicular growth in quail by phasic electrical stimulation of the hypothalamic photosensitive area. J. Comp. Physiol. A 154, 583–589 (1984)
    Article Google Scholar
  7. Meddle, S. L. & Follett, B. K. Photoperiodic activation of Fos-like immunoreactive protein in neurons within the tuberal hypothalamus of Japanese quail. J. Comp. Physiol. A 176, 79–89 (1995)
    Article CAS Google Scholar
  8. Meddle, S. L. & Follett, B. K. Photoperiodically driven changes in Fos expression within the basal tuberal hypothalamus and median eminence of Japanese quail. J. Neurosci. 17, 8909–8918 (1997)
    Article CAS Google Scholar
  9. Silver, R. et al. Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell Tissue Res. 253, 189–198 (1988)
    Article CAS Google Scholar
  10. Yasuo, S., Watanabe, M., Okabayashi, N., Ebihara, S. & Yoshimura, T. Circadian clock genes and photoperiodism: Comprehensive analysis of clock genes expression in the mediobasal hypothalamus, the suprachiasmatic nucleus and the pineal gland of Japanese quail under various light schedules. Endocrinology 144, 3742–3748 (2003)
    Article Google Scholar
  11. Follett, B. K. & Sharp, P. J. Circadian rhythmicity in photoperiodically induced gonadotrophin release and gonadal growth in the quail. Nature 223, 968–971 (1969)
    Article ADS CAS Google Scholar
  12. Kuenzel, W. J. & Masson, M. A Stereotaxic Atlas of the Brain of the Chick (Gallus domesticus) (Johns Hopkins Univ. Press, Baltimore, 1988)
    Google Scholar
  13. Bernal, J. Action of thyroid hormone in brain. J. Endocrinol. Invest. 25, 268–288 (2002)
    Article CAS Google Scholar
  14. Prendergast, B. J., Mosinger, B. Jr, Kolattukudy, P. E. & Nelson, R. J. Hypothalamic gene expression in reproductively photoresponsive and photorefractory Siberian hamsters. Proc. Natl Acad. Sci. USA 99, 16291–16296 (2002)
    Article ADS CAS Google Scholar
  15. Dawson, A., King, V. M., Bentley, G. E. & Ball, G. F. Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16, 365–380 (2001)
    Article CAS Google Scholar
  16. Leonard, J. L. & Visser, T. J. in Thyroid Hormone Metabolism (ed. Hennemann, G.) 189–229 (Marcel Dekker, New York, 1986)
    Google Scholar
  17. Follett, B. K. & Nicholls, T. J. Acute effect of thyroid hormones in mimicking photoperiodically induced release of gonadotropins in Japanese quail. J. Comp. Physiol. B 157, 837–843 (1988)
    Article CAS Google Scholar
  18. Follett, B. K., Nicholls, T. J. & Mayes, C. R. Thyroxine can mimic photoperiodically induced gonadal growth in Japanese quail. J. Comp. Physiol. B 157, 829–835 (1988)
    Article CAS Google Scholar
  19. Chopra, I. J. et al. Pathways of metabolism of thyroid hormones. Recent Prog. Horm. Res. 34, 521–567 (1978)
    CAS PubMed Google Scholar
  20. Follett, B. K. & Nicholls, T. J. Photorefractoriness in Japanese quail: possible involvement of the thyroid gland. J. Exp. Zool. 232, 573–580 (1984)
    Article CAS Google Scholar
  21. Follett, B. K. & Nicholls, T. J. Influences of thyroidectomy and thyroxine replacement on photoperiodically controlled reproduction in quail. J. Endocrinol. 107, 211–221 (1985)
    Article CAS Google Scholar
  22. Dawson, A. Thyroidectomy progressively renders the reproductive system of starlings (Sturnus vulgaris) unresponsive to changes in daylength. J. Endocrinol. 139, 51–55 (1993)
    Article CAS Google Scholar
  23. Dawson, A. thyroidectomy of house sparrow (Passer domesticus) prevents photo-induced testicular growth but not the increased hypothalamic gonadotrophin-releasing hormone. Gen. Comp. Endocrinol. 110, 196–200 (1998)
    Article CAS Google Scholar
  24. Dawson, A. & Thapliyal, J. P. Avian Endocrinology (eds Dawson, A. & Chaturvedi, C. M.) 141–151 (Narosa, New Delhi, 2001)
    Google Scholar
  25. Nicholls, T. J., Follett, B. K., Goldsmith, A. R. & Pearson, H. Possible homologies between photorefractoriness in sheep and birds: the effect of thyroidectomy on the length of the ewe's breeding season. Reprod. Nutr. Dev. 28, 375–385 (1988)
    Article CAS Google Scholar
  26. Yoshimura, T. et al. Molecular analysis of avian circadian clock genes. Mol. Brain Res. 78, 207–215 (2000)
    Article CAS Google Scholar
  27. Tagawa, M. & Hirano, T. Presence of thyroxine in eggs and changes in its content during early development of chum salmon, Oncorhynchus keta. Gen. Comp. Endocrinol. 68, 129–135 (1987)
    Article CAS Google Scholar
  28. Ikuta, K., Aida, K., Okumoto, N. & Hanyu, I. Effects of sex steroids on the smoltification of masu salmon, Oncorhynchus masou. Gen. Comp. Endocrinol. 65, 99–110 (1987)
    Article CAS Google Scholar

Download references