X-ray structure of a protein-conducting channel (original) (raw)

References

  1. Matlack, K. E. S., Mothes, W. & Rapoport, T. A. Protein translocation—tunnel vision. Cell 92, 381–390 (1998)
    Article CAS Google Scholar
  2. Simon, S. M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 65, 371–380 (1991)
    Article CAS Google Scholar
  3. Crowley, K. S., Liao, S. R., Worrell, V. E., Reinhart, G. D. & Johnson, A. E. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461–471 (1994)
    Article CAS Google Scholar
  4. Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271–303 (1996)
    Article CAS Google Scholar
  5. Mothes, W., Prehn, S. & Rapoport, T. A. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13, 3937–3982 (1994)
    Article Google Scholar
  6. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649–657 (1990)
    Article CAS Google Scholar
  7. Gorlich, D. & Rapoport, T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615–630 (1993)
    Article CAS Google Scholar
  8. Deshaies, R. J., Sanders, S. L., Feldheim, D. A. & Schekman, R. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349, 806–808 (1991)
    Article ADS CAS Google Scholar
  9. Panzner, S., Dreier, L., Hartmann, E., Kostka, S. & Rapoport, T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81, 561–570 (1995)
    Article CAS Google Scholar
  10. Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-α-factor across the ER membrane. Cell 97, 553–564 (1999)
    Article CAS Google Scholar
  11. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994)
    Article CAS Google Scholar
  12. Schiebel, E., Driessen, A. J. M., Hartl, F.-U. & Wickner, W. ΔµH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927–939 (1991)
    Article CAS Google Scholar
  13. Irihimovitch, V. & Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii.. J. Biol. Chem. 278, 12881–12887 (2003)
    Article CAS Google Scholar
  14. Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996)
    Article CAS Google Scholar
  15. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 19, 2123–2126 (1997)
    Article ADS Google Scholar
  16. Menetret, J. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000)
    Article CAS Google Scholar
  17. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001)
    Article CAS Google Scholar
  18. Morgan, D. G., Menetret, J. F., Neuhof, A., Rapoport, T. A. & Akey, C. W. Structure of the mammalian ribosome-channel complex at 17Å resolution. J. Mol. Biol. 324, 871–886 (2002)
    Article CAS Google Scholar
  19. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002)
    Article ADS CAS Google Scholar
  20. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)
    Article ADS CAS Google Scholar
  21. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002)
    Article ADS CAS Google Scholar
  22. Flower, A. M., Osborne, R. S. & Silhavy, T. J. The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. EMBO J. 14, 884–893 (1995)
    Article CAS Google Scholar
  23. Murphy, C. K. & Beckwith, J. Residues essential for the function of SecE, a membrane component of the Escherichia coli secretion apparatus, are located in a conserved cytoplasmic region. Proc. Natl Acad. Sci. USA 91, 2557–2561 (1994)
    Article ADS CAS Google Scholar
  24. Satoh, Y., Mori, H. & Ito, K. Nearest neighbor analysis of the SecYEG complex. 2. Identification of a SecY-SecE cytosolic interface. Biochemistry 42, 7442–7447 (2003)
    Article CAS Google Scholar
  25. Nishiyama, K., Suzuki, T. & Tokuda, H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85, 71–81 (1996)
    Article CAS Google Scholar
  26. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999)
    CAS PubMed PubMed Central Google Scholar
  27. Hamman, B. D., Hendershot, L. M. & Johnson, A. E. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92, 747–758 (1998)
    Article CAS Google Scholar
  28. Kurzchalia, T. V. et al. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products. Eur. J. Biochem. 172, 663–668 (1988)
    Article CAS Google Scholar
  29. Tani, K., Tokuda, H. & Mizushima, S. Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization. J. Biol. Chem. 265, 17341–17347 (1990)
    CAS PubMed Google Scholar
  30. Mingarro, I., Nilsson, I., Whitley, P. & von Heijne, G. Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biol. 1, 3 (2000)
    Article CAS Google Scholar
  31. Kowarik, M., Kung, S., Martoglio, B. & Helenius, A. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10, 769–778 (2002)
    Article CAS Google Scholar
  32. Hamman, B. D., Chen, J. C., Johnson, E. E. & Johnson, A. E. The aqueous pore through the translocon has a diameter of 40–60Å during cotranslational protein translocation at the ER membrane. Cell 89, 535–544 (1997)
    Article CAS Google Scholar
  33. Jungnickel, B. & Rapoport, T. A. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261–270 (1995)
    Article CAS Google Scholar
  34. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998)
    Article CAS Google Scholar
  35. Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000)
    Article CAS Google Scholar
  36. Bieker, K. L., Phillips, G. J. & Silhavy, T. J. The sec and prl genes of Escherichia coli.. J. Bioenerg. Biomembr. 22, 291–310 (1990)
    Article CAS Google Scholar
  37. Derman, A. I., Puziss, J. W., Bassford, P. J. & Beckwith, J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12, 879–888 (1993)
    Article CAS Google Scholar
  38. Raden, D., Song, W. & Gilmore, R. Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J. Cell Biol. 150, 53–64 (2000)
    Article CAS Google Scholar
  39. Prinz, A., Behrens, C., Rapoport, T. A., Hartmann, E. & Kalies, K. U. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J. 19, 1900–1906 (2000)
    Article CAS Google Scholar
  40. Mori, H. & Ito, K. The Sec protein-translocation pathway. Trends Microbiol. 9, 494–500 (2001)
    Article CAS Google Scholar
  41. Kim, Y. J., Rajapandi, T. & Oliver, D. SecA protein is exposed to the periplasmic surface of the E.coli inner membrane in its active state. Cell 78, 845–853 (1994)
    Article CAS Google Scholar
  42. Heritage, D. & Wonderlin, W. F. Translocon pores in the endoplasmic reticulum are permeable to a neutral, polar molecule. J. Biol. Chem. 276, 22655–22662 (2001)
    Article CAS Google Scholar
  43. Manting, E. H., van Der Does, C., Remigy, H., Engel, A. & Driessen, A. J. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19, 852–861 (2000)
    Article CAS Google Scholar
  44. Mori, H. et al. Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J. Biol. Chem. 278, 14257–14264 (2003)
    Article CAS Google Scholar
  45. Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375–4384 (2003)
    Article CAS Google Scholar
  46. Kaufmann, A., Manting, E. H., Veenendaal, A. K., Driessen, A. J. & van der Does, C. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38, 9115–9125 (1999)
    Article CAS Google Scholar
  47. van der Sluis, E. O., Nouwen, N. & Driessen, A. J. SecY–SecY and SecY–SecG contacts revealed by site-specific crosslinking. FEBS Lett. 527, 159–165 (2002)
    Article CAS Google Scholar
  48. Yahr, T. L. & Wickner, W. T. Evaluating the oligomeric state of SecYEG in preprotein translocase. EMBO J. 19, 4393–4401 (2000)
    Article CAS Google Scholar
  49. Veenendaal, A. K., van der Does, C. & Driessen, A. J. Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J. Biol. Chem. 276, 32559–32566 (2001)
    Article CAS Google Scholar
  50. Plath, K., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Interactions between Sec-complex and prepro-α-factor during posttranslational protein transport into the ER. Mol. Biol. Cell (in the press)

Download references