Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase (original) (raw)

References

  1. Mitchison, T. J. & Salmon, E. D. Mitosis: a history of division. Nature Cell Biol. 3, E17–E21 (2001)
    Article CAS PubMed Google Scholar
  2. Wittmann, T., Hyman, A. & Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol. 3, E28–E34 (2001)
    Article CAS PubMed Google Scholar
  3. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  4. Mitchison, T. J., Evans, L., Schulze, E. & Kirschner, M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45, 515–527 (1986)
    Article CAS PubMed Google Scholar
  5. Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104, 9–18 (1987)
    Article CAS PubMed Google Scholar
  6. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652 (1989)
    Article CAS PubMed Google Scholar
  7. Hunter, A. W. & Wordeman, L. How motor proteins influence microtubule polymerization dynamics. J. Cell Sci. 24, 4379–4389 (2000)
    Google Scholar
  8. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995)
    Article CAS PubMed Google Scholar
  9. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996)
    Article CAS PubMed Google Scholar
  10. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. KinI kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999)
    Article CAS PubMed Google Scholar
  11. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  12. Kline-Smith, S. L. & Walczak, C. E. The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol. Biol. Cell 13, 2718–2731 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  13. Walczak, C. E., Gan, E. C., Desai, A., Mitchison, T. J. & Kline-Smith, S. L. The microtubule-destabilizing kinesin XKCM1 is required for chromosome positioning during spindle assembly. Curr. Biol. 12, 1885–1889 (2002)
    Article CAS PubMed Google Scholar
  14. Goldstein, L. S. B. & Gunawardena, S. Flying through the Drosophila cytoskeletal genome. J. Cell Biol. 150, F63–F68 (2000)
    Article CAS PubMed Google Scholar
  15. Sullivan, W. & Theurkauf, W. E. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr. Opin. Cell Biol. 7, 18–22 (1995)
    Article CAS PubMed Google Scholar
  16. Sullivan, W., Fogarty, P. & Theurkauf, W. E. Mutations affecting the cytoskeletal organization of syncytial Drosophila embryos. Development 118, 1245–1254 (1993)
    CAS PubMed Google Scholar
  17. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998)
    Article CAS PubMed Google Scholar
  18. Brust-Mascher, I. & Scholey, J. M. Microtubule flux and sliding in mitotic spindles of Drosophila embryos. Mol. Biol. Cell 13, 3967–3975 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  19. Maddox, P., Desai, A., Oegema, K., Mitchison, T. J. & Salmon, E. D. Poleward microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos. Curr. Biol. 12, 1670–1674 (2002)
    Article CAS PubMed Google Scholar
  20. Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 (1996)
    Article CAS PubMed PubMed Central Google Scholar
  21. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biol. 2, 922–930 (2000)
    Article CAS PubMed Google Scholar
  22. Troxell, C. L. et al. pkl1+ and klp2+: Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol. Biol. Cell 12, 3476–3488 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  23. West, R. R., Malmstrom, T., Troxell, C. L. & McIntosh, J. R. Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. Mol. Biol. Cell 12, 3919–3932 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  24. West, R. R., Malmstrom, T. & McIntosh, J. R. Kinesins klp5+ and klp6+ are required for normal chromosome movement in mitosis. J. Cell Sci. 115, 931–940 (2002)
    CAS PubMed Google Scholar
  25. Garcia, M. A., Koonrugsa, N. & Toda, T. Two kinesin-like KinI family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase. Curr. Biol. 12, 610–621 (2002)
    Article CAS PubMed Google Scholar
  26. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  27. Bousbaa, H., Correia, L., Gorbsky, G. J. & Sunkel, C. E. Mitotic phosphoepitopes are expressed in Kc cells, neuroblasts and isolated chromosomes of Drosophila melanogaster. J. Cell Sci. 110, 1979–1988 (1997)
    CAS PubMed Google Scholar
  28. Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W. & Scholey, J. M. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature Cell Biol. 1, 51–54 (1999)
    Article CAS PubMed Google Scholar
  29. Valdes-Perez, R. E. & Minden, J. S. Drosophila melanogaster syncytial nuclear divisions are patterned: time-lapse images, hypothesis and computational evidence. J. Theor. Biol. 175, 525–532 (1995)
    Article CAS PubMed Google Scholar
  30. McIntosh, J. R., Grishchuk, E. L. & West, R. R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193–219 (2002)
    Article CAS PubMed Google Scholar

Download references