An optimal bronchial tree may be dangerous (original) (raw)

Nature volume 427, pages 633–636 (2004)Cite this article

Abstract

The geometry and dimensions of branched structures such as blood vessels or airways are important factors in determining the efficiency of physiological processes. It has been shown that fractal trees can be space filling1 and can ensure minimal dissipation2,3,4. The bronchial tree of most mammalian lungs is a good example of an efficient distribution system with an approximate fractal structure5,6. Here we present a study of the compatibility between physical optimization and physiological robustness in the design of the human bronchial tree. We show that this physical optimization is critical in the sense that small variations in the geometry can induce very large variations in the net air flux. Maximum physical efficiency therefore cannot be a sufficient criterion for the physiological design of bronchial trees. Rather, the design of bronchial trees must be provided with a safety factor and the capacity for regulating airway calibre. Paradoxically, our results suggest that bronchial malfunction related to asthma is a necessary consequence of the optimized efficiency of the tree structure.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Mandelbrot, B. The Fractal Geometry of Nature (W. H. Freeman, San Francisco, CA, 1982)
    MATH Google Scholar
  2. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997)
    Article CAS Google Scholar
  3. Brown, J. H., West, G. B. & Enquist, B. J. Scaling in Biology (Oxford Univ. Press, Oxford, UK, 2000)
    MATH Google Scholar
  4. Bejan, A. Shape and Structure, From Engineering to Nature (Cambridge Univ. Press, Cambridge, UK, 2000)
    MATH Google Scholar
  5. Nelson, T. R. & Manchester, D. K. Modeling of lung morphogenesis using fractal geometries. IEEE Trans. Med. Imaging 7, 321–327 (1988)
    Article CAS Google Scholar
  6. West, B. J., Barghava, V. & Goldberger, A. L. Beyond the principle of similitude: renormalization in the bronchial tree. J. Appl. Physiol. 60, 1089–1097 (1986)
    Article CAS Google Scholar
  7. Weibel, E. R. The Pathway for Oxygen (Harvard Univ. Press, Cambridge, MA, 1984)
    Google Scholar
  8. Mauroy, B., Filoche, M., Andrade, J. S. & Sapoval, B. Interplay between geometry and flow distribution in an airway tree. Phys. Rev. Lett. 90, 1–4 (2003)
    Article Google Scholar
  9. Hess, W. R. Das Prinzip des kleinsten Kraftverbrauchs im Dienste hämodynamischer Forschung. Archiv Anat. Physiol. 1914, 1–62 (1914)
    Google Scholar
  10. Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood. Proc. Natl Acad. Sci. USA 12, 207–214 (1926)
    Article ADS CAS Google Scholar
  11. Weibel, E. R. in The Lung: Scientific Foundations 2nd edn Vol. 1 (eds Crystal, R. G., West, J. B., Weibel, E. R. & Barnes, P. J.) 1061–1071 (Lippincott-Raven, Philadelphia, PA, 1997)
    Google Scholar
  12. Que, C. L., Kenyon, C. M., Olivenstein, R., Macklem, P. T. & Maksym, G. N. Homeokinesis and short-term variability of human airway caliber. J. Appl. Physiol. 91, 1131–1141 (2001)
    Article CAS Google Scholar
  13. Sapoval, B. Universalités et Fractales (Flammarion, Paris, 1997)
    MATH Google Scholar
  14. Kitaoka, H., Ryuji, T. & Suki, B. A three-dimensional model of the human airway tree. J. Appl. Physiol. 87, 2207–2217 (1999)
    Article CAS Google Scholar
  15. Sapoval, B., Filoche, M. & Weibel, E. R. Smaller is better—but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proc. Natl Acad. Sci. USA 99, 10411–10416 (2002)
    Article ADS CAS Google Scholar
  16. Wilber, R. L. et al. Incidence of exercise-induced bronchospasm in Olympic winter sport athletes. Med. Sci. Sports Exerc. 32, 732–737 (2000)
    Article CAS Google Scholar
  17. Weibel, E. R. Symmorphosis (Harvard Univ. Press, Cambridge, MA, 2000)
    Google Scholar
  18. Hoppeler, H. & Fluck, M. Plasticity of skeletal muscle mitochondria: structure and function. Med. Sci. Sports Exerc. 35, 95–104 (2003)
    Article CAS Google Scholar
  19. Weibel, E. R. Morphometry of the Human Lung (Springer, Berlin, 1963)
    Book Google Scholar

Download references

Acknowledgements

The authors wish to thank J. M. Morel and M. Bernot for useful discussions.

Author information

Authors and Affiliations

  1. Centre de Mathématiques et de leurs Applications, Ecole Normale Supérieure de Cachan, 94235, Cachan, France
    B. Mauroy, M. Filoche & B. Sapoval
  2. Laboratoire de Physique de la Matière Condensée, CNRS Ecole Polytechnique, 91128, Palaiseau, France
    M. Filoche & B. Sapoval
  3. Department of Anatomy, University of Bern, CH-3000, Bern, Switzerland
    E. R. Weibel

Authors

  1. B. Mauroy
  2. M. Filoche
  3. E. R. Weibel
  4. B. Sapoval

Corresponding author

Correspondence toB. Sapoval.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

About this article

Cite this article

Mauroy, B., Filoche, M., Weibel, E. et al. An optimal bronchial tree may be dangerous.Nature 427, 633–636 (2004). https://doi.org/10.1038/nature02287

Download citation

This article is cited by