Protein-only transmission of three yeast prion strains (original) (raw)

References

  1. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998)
    Article ADS CAS PubMed PubMed Central Google Scholar
  2. Dickinson, A. G. & Outram, G. W. Genetic aspects of unconventional virus infections: the basis of the virino hypothesis. Ciba Found. Symp. 135, 63–83 (1988)
    CAS PubMed Google Scholar
  3. Weissmann, C. A ‘unified theory’ of prion propagation. Nature 352, 679–683 (1991)
    Article ADS CAS PubMed Google Scholar
  4. Cox, B. S., Tuite, M. F. & McLaughlin, C. S. The psi factor of yeast: a problem in inheritance. Yeast 4, 159–178 (1988)
    Article CAS PubMed Google Scholar
  5. Wickner, R. B. [_URE3_] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994)
    Article ADS CAS PubMed Google Scholar
  6. Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676 (1994)
    CAS PubMed PubMed Central Google Scholar
  7. King, C.-Y. Supporting the structural basis of prion strains: induction and identification of [_PSI_] variants. J. Mol. Biol. 307, 1247–1260 (2001)
    Article CAS PubMed Google Scholar
  8. Skerra, A. & Schmidt, T. G. Use of the Strep-Tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol. 326, 271–304 (2000)
    Article CAS PubMed Google Scholar
  9. Dickinson, A. G. et al. Extraneural competition between different scrapie agents leading to loss of infectivity. Nature 253, 556 (1975)
    Article ADS CAS PubMed Google Scholar
  10. Maddelein, M. L. & Wickner, R. B. Two prion-inducing regions of Ure2p are nonoverlapping. Mol. Cell. Biol. 19, 4516–4524 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  11. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880–884 (1995)
    Article ADS CAS PubMed Google Scholar
  12. Kushnirov, V. V. & Ter-Avanesyan, M. D. Structure and replication of yeast prions. Cell 94, 13–16 (1998)
    Article CAS PubMed Google Scholar
  13. Sparrer, H. E., Santoso, A., Szoka, F. C. & Weissman, J. S. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by _in vitro_-converted Sup35 protein. Science 289, 595–599 (2000)
    Article ADS CAS PubMed Google Scholar
  14. Chernoff, Y. O., Derkach, I. L. & Inge-Vechtomov, S. G. Multicopy SUP35 gene induces de-novo appearance of _psi_-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24, 268–270 (1993)
    Article CAS PubMed Google Scholar
  15. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [_PSI_] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996)
    CAS PubMed PubMed Central Google Scholar
  16. Liebman, S. W. Progress toward an ultimate proof of the prion hypothesis. Proc. Natl Acad. Sci. USA 99, 9098–9100 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  17. Tuite, M. F. & Cox, B. S. Propagation of yeast prions. Nature Rev. Mol. Cell. Biol. 4, 878–890 (2003)
    Article CAS Google Scholar
  18. Uptain, S. M., Sawicki, G. J., Caughey, B. & Lindquist, S. L. Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J. 20, 6236–6245 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  19. Liu, J.-J., Sondheimer, N. & Lindquist, S. L. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc. Natl Acad. Sci. USA 99, 16446–16453 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  20. Way, M., Pope, B., Gooch, J., Hawkins, M. & Weeds, A. G. Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J. 9, 4103–4109 (1990)
    Article CAS PubMed PubMed Central Google Scholar
  21. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990)
    Article CAS PubMed Google Scholar
  22. Sherman, F. Getting started with yeast. Methods Enzymol. 194, 3–21 (1991)
    Article CAS PubMed Google Scholar
  23. Harashima, S., Takagi, A. & Oshima, Y. Transformation of protoplasted yeast cells is directly associated with cell fusion. Mol. Cell. Biol. 4, 771–778 (1984)
    Article CAS PubMed PubMed Central Google Scholar
  24. Rose, M. D., Price, B. R. & Fink, G. R. Saccharomyces cerevisiae nuclear fusion requires prior activation by alpha factor. Mol. Cell. Biol. 6, 3490–3497 (1986)
    Article CAS PubMed PubMed Central Google Scholar
  25. Wischik, C. et al. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc. Natl Acad. Sci. USA 85, 4884–4888 (1988)
    Article ADS CAS PubMed PubMed Central Google Scholar
  26. Baxa, U. et al. Architecture of Ure2p prion filaments. J. Biol. Chem. 278, 43717–43727 (2003)
    Article CAS PubMed Google Scholar
  27. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000)
    Article ADS CAS PubMed Google Scholar

Download references