Integration of quanta in cerebellar granule cells during sensory processing (original) (raw)
References
Eccles, J. C., Ito, M. & Szentagothai, J. The Cerebellum as a Neuronal Machine (Springer, Berlin, 1967) Book Google Scholar
Jakab, R. L. & Hamori, J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. (Berl.)179, 81–88 (1988) ArticleCAS Google Scholar
Konnerth, A., Llano, I. & Armstrong, C. M. Synaptic currents in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA87, 2662–2665 (1990) ArticleADSCAS Google Scholar
Takechi, H., Eilers, J. & Konnerth, A. A new class of synaptic response involving calcium release in dendritic spines. Nature396, 757–760 (1998) ArticleADSCAS Google Scholar
Perkel, D. J., Hestrin, S., Sah, P. & Nicoll, R. A. Excitatory synaptic currents in Purkinje cells. Proc. R. Soc. Lond. B241, 116–121 (1990) ArticleADSCAS Google Scholar
Casado, M., Isope, P. & Ascher, P. Involvement of presynaptic _N_-methyl-d-aspartate receptors in cerebellar long-term depression. Neuron33, 123–130 (2002) ArticleCAS Google Scholar
Wang, S. S.-H., Denk, W. & Häusser, M. Coincidence detection in single dendritic spines mediated by calcium release. Nature Neurosci.3, 1266–1273 (2000) ArticleCAS Google Scholar
Brown, S. P., Brenowitz, S. D. & Regehr, W. G. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature Neurosci.6, 1048–1057 (2003) ArticleCAS Google Scholar
Silver, R. A., Traynelis, S. F. & Cull-Candy, S. G. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature355, 163–166 (1992) ArticleADSCAS Google Scholar
Gabbiani, F., Midtgaard, J. & Knöpfel, T. Synaptic integration in a model of cerebellar granule cells. J. Neurophysiol.72, 999–1009 (1994) ArticleCAS Google Scholar
Shambes, G. M., Gibson, J. M. & Welker, W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol.15, 94–140 (1978) ArticleCAS Google Scholar
Bower, J. M. & Woolston, D. C. Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J. Neurophysiol.49, 745–766 (1983) ArticleCAS Google Scholar
Morissette, J. & Bower, J. M. Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp. Brain Res.109, 240–250 (1996) ArticleCAS Google Scholar
D'Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. (Lond.)484, 397–413 (1995) ArticleCAS Google Scholar
Brickley, S. G., Revilla, V., Cull-Candy, S. G., Wisden, W. & Farrant, M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature409, 88–92 (2001) ArticleADSCAS Google Scholar
Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. (Lond.)497, 753–759 (1996) ArticleCAS Google Scholar
D'Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J. Neurophysiol.80, 493–503 (1998) ArticleCAS Google Scholar
Wall, M. J. & Usowicz, M. M. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur. J. Neurosci.9, 533–548 (1997) ArticleCAS Google Scholar
Hamann, M., Rossi, D. J. & Attwell, D. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron33, 625–633 (2002) ArticleCAS Google Scholar
Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M. & Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc. Natl Acad. Sci. USA100, 14439–14444 (2003) ArticleADSCAS Google Scholar
Eccles, J. C., Faber, D. S., Murphy, J. T., Sabah, N. H. & Taborikova, H. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. I. In mossy fibers and granule cells. Exp. Brain Res.13, 15–35 (1971) ArticleCAS Google Scholar
Garwicz, M., Jörntell, H. & Ekerot, C. F. Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J. Physiol. (Lond.)512, 277–293 (1998) ArticleCAS Google Scholar
Marr, D. A theory of cerebellar cortex. J. Physiol. (Lond.)202, 437–470 (1969) ArticleCAS Google Scholar
Albus, J. S. A theory of cerebellar function. Math. Biosci.10, 25–61 (1971) Article Google Scholar
Wall, M. J. Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum. Eur. J. Neurosci.18, 869–878 (2003) Article Google Scholar
Krahe, R. & Gabbiani, F. Burst firing in sensory systems. Nature Rev. Neurosci.5, 13–23 (2004) ArticleCAS Google Scholar
Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci.20, 38–43 (1997) ArticleCAS Google Scholar
Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature419, 65–70 (2002) ArticleADSCAS Google Scholar
Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch.444, 491–498 (2002) ArticleCAS Google Scholar
Llinás, R. in The Cerebellum: New Vistas (eds Palay, S. L. & Chan-Palay, V.) 189–194 (Springer, New York, 1982) Book Google Scholar