Integration of quanta in cerebellar granule cells during sensory processing (original) (raw)

References

  1. Eccles, J. C., Ito, M. & Szentagothai, J. The Cerebellum as a Neuronal Machine (Springer, Berlin, 1967)
    Book Google Scholar
  2. Jakab, R. L. & Hamori, J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. (Berl.) 179, 81–88 (1988)
    Article CAS Google Scholar
  3. Konnerth, A., Llano, I. & Armstrong, C. M. Synaptic currents in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA 87, 2662–2665 (1990)
    Article ADS CAS Google Scholar
  4. Takechi, H., Eilers, J. & Konnerth, A. A new class of synaptic response involving calcium release in dendritic spines. Nature 396, 757–760 (1998)
    Article ADS CAS Google Scholar
  5. Perkel, D. J., Hestrin, S., Sah, P. & Nicoll, R. A. Excitatory synaptic currents in Purkinje cells. Proc. R. Soc. Lond. B 241, 116–121 (1990)
    Article ADS CAS Google Scholar
  6. Casado, M., Isope, P. & Ascher, P. Involvement of presynaptic _N_-methyl-d-aspartate receptors in cerebellar long-term depression. Neuron 33, 123–130 (2002)
    Article CAS Google Scholar
  7. Wang, S. S.-H., Denk, W. & Häusser, M. Coincidence detection in single dendritic spines mediated by calcium release. Nature Neurosci. 3, 1266–1273 (2000)
    Article CAS Google Scholar
  8. Brown, S. P., Brenowitz, S. D. & Regehr, W. G. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature Neurosci. 6, 1048–1057 (2003)
    Article CAS Google Scholar
  9. Silver, R. A., Traynelis, S. F. & Cull-Candy, S. G. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355, 163–166 (1992)
    Article ADS CAS Google Scholar
  10. Gabbiani, F., Midtgaard, J. & Knöpfel, T. Synaptic integration in a model of cerebellar granule cells. J. Neurophysiol. 72, 999–1009 (1994)
    Article CAS Google Scholar
  11. Shambes, G. M., Gibson, J. M. & Welker, W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol. 15, 94–140 (1978)
    Article CAS Google Scholar
  12. Bower, J. M. & Woolston, D. C. Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J. Neurophysiol. 49, 745–766 (1983)
    Article CAS Google Scholar
  13. Morissette, J. & Bower, J. M. Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp. Brain Res. 109, 240–250 (1996)
    Article CAS Google Scholar
  14. D'Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. (Lond.) 484, 397–413 (1995)
    Article CAS Google Scholar
  15. Brickley, S. G., Revilla, V., Cull-Candy, S. G., Wisden, W. & Farrant, M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409, 88–92 (2001)
    Article ADS CAS Google Scholar
  16. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. (Lond.) 497, 753–759 (1996)
    Article CAS Google Scholar
  17. D'Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J. Neurophysiol. 80, 493–503 (1998)
    Article CAS Google Scholar
  18. Wall, M. J. & Usowicz, M. M. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur. J. Neurosci. 9, 533–548 (1997)
    Article CAS Google Scholar
  19. Hamann, M., Rossi, D. J. & Attwell, D. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33, 625–633 (2002)
    Article CAS Google Scholar
  20. Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M. & Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc. Natl Acad. Sci. USA 100, 14439–14444 (2003)
    Article ADS CAS Google Scholar
  21. Eccles, J. C., Faber, D. S., Murphy, J. T., Sabah, N. H. & Taborikova, H. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. I. In mossy fibers and granule cells. Exp. Brain Res. 13, 15–35 (1971)
    Article CAS Google Scholar
  22. Garwicz, M., Jörntell, H. & Ekerot, C. F. Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J. Physiol. (Lond.) 512, 277–293 (1998)
    Article CAS Google Scholar
  23. Marr, D. A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969)
    Article CAS Google Scholar
  24. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971)
    Article Google Scholar
  25. Wall, M. J. Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum. Eur. J. Neurosci. 18, 869–878 (2003)
    Article Google Scholar
  26. Krahe, R. & Gabbiani, F. Burst firing in sensory systems. Nature Rev. Neurosci. 5, 13–23 (2004)
    Article CAS Google Scholar
  27. Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997)
    Article CAS Google Scholar
  28. Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002)
    Article ADS CAS Google Scholar
  29. Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch. 444, 491–498 (2002)
    Article CAS Google Scholar
  30. Llinás, R. in The Cerebellum: New Vistas (eds Palay, S. L. & Chan-Palay, V.) 189–194 (Springer, New York, 1982)
    Book Google Scholar

Download references