Aquaporin-0 membrane junctions reveal the structure of a closed water pore (original) (raw)

References

  1. Costello, M. J., McIntosh, T. J. & Robertson, J. D. Distribution of gap junctions and square array junctions in the mammalian lens. Invest. Ophthalmol. Vis. Sci. 30, 975–989 (1989)
    CAS PubMed Google Scholar
  2. Takemoto, L., Takehana, M. & Horwitz, J. Covalent changes in MIP26K during aging of the human lens membrane. Invest. Ophthalmol. Vis. Sci. 27, 443–446 (1986)
    CAS PubMed Google Scholar
  3. Roy, D., Spector, A. & Farnsworth, P. N. Human lens membrane: comparison of major intrinsic polypeptides from young and old lenses isolated by a new methodology. Exp. Eye Res. 28, 353–358 (1979)
    Article CAS Google Scholar
  4. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)
    Article ADS CAS Google Scholar
  5. Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001)
    Article ADS CAS Google Scholar
  6. Ren, G., Reddy, V. S., Cheng, A., Melnyk, P. & Mitra, A. K. Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc. Natl Acad. Sci. USA 98, 1398–1403 (2001)
    Article ADS CAS Google Scholar
  7. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000)
    Article ADS CAS Google Scholar
  8. Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525–530 (2002)
    Article ADS CAS Google Scholar
  9. Savage, D. F., Egea, P. F., Robles-Colmenares, Y., O'Connell, J. D. III & Stroud, R. M. Architecture and selectivity in aquaporins: 2.5Å X-ray structure of aquaporin Z. PLoS Biol. 1, 334–340 (2003)
    Article CAS Google Scholar
  10. Agre, P. et al. Aquaporin water channels–from atomic structure to clinical medicine. J. Physiol. (Lond.) 542, 3–16 (2002)
    Article CAS Google Scholar
  11. Chandy, G., Zampighi, G. A., Kreman, M. & Hall, J. E. Comparison of the water transporting properties of MIP and AQP1. J. Membr. Biol. 159, 29–39 (1997)
    Article CAS Google Scholar
  12. Nemeth-Cahalan, K. L. & Hall, J. E. pH and calcium regulate the water permeability of aquaporin 0. J. Biol. Chem. 275, 6777–6782 (2000)
    Article CAS Google Scholar
  13. Tournaire-Roux, C. et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425, 393–397 (2003)
    Article ADS CAS Google Scholar
  14. Mathias, R. T., Rae, J. L. & Baldo, G. J. Physiological properties of the normal lens. Physiol. Rev. 77, 21–50 (1997)
    Article CAS Google Scholar
  15. Donaldson, P., Kistler, J. & Mathias, R. T. Molecular solutions to mammalian lens transparency. News Physiol. Sci. 16, 118–123 (2001)
    CAS PubMed Google Scholar
  16. Fotiadis, D. et al. Surface tongue and groove contours on lens MIP facilitate cell-to-cell adherence. J. Mol. Biol. 300, 779–789 (2000)
    Article CAS Google Scholar
  17. Hasler, L. et al. Purified lens major intrinsic protein (MIP) forms highly ordered tetragonal two-dimensional arrays by reconstitution. J. Mol. Biol. 279, 855–864 (1998)
    Article CAS Google Scholar
  18. Gorin, M. B., Yancey, S. B., Cline, J., Revel, J. P. & Horwitz, J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39, 49–59 (1984)
    Article CAS Google Scholar
  19. Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993)
    Article CAS Google Scholar
  20. de Groot, B. L. & Grubmuller, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001)
    Article ADS CAS Google Scholar
  21. Varadaraj, K. et al. The role of MIP in lens fiber cell membrane transport. J. Membr. Biol. 170, 191–203 (1999)
    Article CAS Google Scholar
  22. Bond, P. J., Faraldo-Gomez, J. D. & Sansom, M. S. OmpA: a pore or not a pore? Simulation and modeling studies. Biophys. J. 83, 763–775 (2002)
    Article ADS CAS Google Scholar
  23. Gonen, T., Donaldson, P. & Kistler, J. Galectin-3 is associated with the plasma membrane of lens fiber cells. Invest. Ophthalmol. Vis. Sci. 41, 199–203 (2000)
    CAS PubMed PubMed Central Google Scholar
  24. Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol. 286, 861–882 (1999)
    Article CAS Google Scholar
  25. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D 56, 1622–1624 (2000)
    Article CAS Google Scholar
  26. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996)
    Article CAS Google Scholar
  27. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article CAS Google Scholar
  28. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  29. Huang, C. C., Couch, G. S., Pettersen, E. F. & Ferrin, T. E. Chimera: an extensible molecular modeling application constructed using standard components. Pacif. Symp. Biocomput. 1, 724 (1996)
    Google Scholar

Download references