Aquaporin-0 membrane junctions reveal the structure of a closed water pore (original) (raw)
References
Costello, M. J., McIntosh, T. J. & Robertson, J. D. Distribution of gap junctions and square array junctions in the mammalian lens. Invest. Ophthalmol. Vis. Sci.30, 975–989 (1989) CASPubMed Google Scholar
Takemoto, L., Takehana, M. & Horwitz, J. Covalent changes in MIP26K during aging of the human lens membrane. Invest. Ophthalmol. Vis. Sci.27, 443–446 (1986) CASPubMed Google Scholar
Roy, D., Spector, A. & Farnsworth, P. N. Human lens membrane: comparison of major intrinsic polypeptides from young and old lenses isolated by a new methodology. Exp. Eye Res.28, 353–358 (1979) ArticleCAS Google Scholar
Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature407, 599–605 (2000) ArticleADSCAS Google Scholar
Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature414, 872–878 (2001) ArticleADSCAS Google Scholar
Ren, G., Reddy, V. S., Cheng, A., Melnyk, P. & Mitra, A. K. Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc. Natl Acad. Sci. USA98, 1398–1403 (2001) ArticleADSCAS Google Scholar
Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science290, 481–486 (2000) ArticleADSCAS Google Scholar
Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science296, 525–530 (2002) ArticleADSCAS Google Scholar
Savage, D. F., Egea, P. F., Robles-Colmenares, Y., O'Connell, J. D. III & Stroud, R. M. Architecture and selectivity in aquaporins: 2.5Å X-ray structure of aquaporin Z. PLoS Biol.1, 334–340 (2003) ArticleCAS Google Scholar
Agre, P. et al. Aquaporin water channels–from atomic structure to clinical medicine. J. Physiol. (Lond.)542, 3–16 (2002) ArticleCAS Google Scholar
Chandy, G., Zampighi, G. A., Kreman, M. & Hall, J. E. Comparison of the water transporting properties of MIP and AQP1. J. Membr. Biol.159, 29–39 (1997) ArticleCAS Google Scholar
Nemeth-Cahalan, K. L. & Hall, J. E. pH and calcium regulate the water permeability of aquaporin 0. J. Biol. Chem.275, 6777–6782 (2000) ArticleCAS Google Scholar
Tournaire-Roux, C. et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature425, 393–397 (2003) ArticleADSCAS Google Scholar
Mathias, R. T., Rae, J. L. & Baldo, G. J. Physiological properties of the normal lens. Physiol. Rev.77, 21–50 (1997) ArticleCAS Google Scholar
Donaldson, P., Kistler, J. & Mathias, R. T. Molecular solutions to mammalian lens transparency. News Physiol. Sci.16, 118–123 (2001) CASPubMed Google Scholar
Fotiadis, D. et al. Surface tongue and groove contours on lens MIP facilitate cell-to-cell adherence. J. Mol. Biol.300, 779–789 (2000) ArticleCAS Google Scholar
Hasler, L. et al. Purified lens major intrinsic protein (MIP) forms highly ordered tetragonal two-dimensional arrays by reconstitution. J. Mol. Biol.279, 855–864 (1998) ArticleCAS Google Scholar
Gorin, M. B., Yancey, S. B., Cline, J., Revel, J. P. & Horwitz, J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell39, 49–59 (1984) ArticleCAS Google Scholar
Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J.65, 2455–2460 (1993) ArticleCAS Google Scholar
de Groot, B. L. & Grubmuller, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science294, 2353–2357 (2001) ArticleADSCAS Google Scholar
Varadaraj, K. et al. The role of MIP in lens fiber cell membrane transport. J. Membr. Biol.170, 191–203 (1999) ArticleCAS Google Scholar
Bond, P. J., Faraldo-Gomez, J. D. & Sansom, M. S. OmpA: a pore or not a pore? Simulation and modeling studies. Biophys. J.83, 763–775 (2002) ArticleADSCAS Google Scholar
Gonen, T., Donaldson, P. & Kistler, J. Galectin-3 is associated with the plasma membrane of lens fiber cells. Invest. Ophthalmol. Vis. Sci.41, 199–203 (2000) CASPubMedPubMed Central Google Scholar
Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol.286, 861–882 (1999) ArticleCAS Google Scholar
Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D56, 1622–1624 (2000) ArticleCAS Google Scholar
Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol.259, 393–421 (1996) ArticleCAS Google Scholar
Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticleCAS Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991) Article Google Scholar
Huang, C. C., Couch, G. S., Pettersen, E. F. & Ferrin, T. E. Chimera: an extensible molecular modeling application constructed using standard components. Pacif. Symp. Biocomput.1, 724 (1996) Google Scholar