A possible terrestrial analogue for haematite concretions on Mars (original) (raw)

References

  1. NASA Jet Propulsion Laboratory. Mars Exploration Rover Missionhttp://marsrovers.jpl.nasa.gov〉 (February–March 2004).
  2. Glotch, T. D. et al. Hematite at Meridiani Planum: Detailed spectroscopic observations and testable hypotheses. Lunar Planet. Sci. Conf. XXXV [online] Abstr. 2168; 〈http://www.lpi.usra.edu/meetings/lpsc2004〉 (2004)
  3. Squyres, S. W. et al. Initial results from the MER Athena Science investigation at Gusev Crater and Meridiani Planum. Lunar Planet. Sci. Conf. XXXV [online] Abstr. 2187, 〈http://www.lpi.usra.edu/meetings/lpsc2004〉 (2004)
  4. Chan, M. A., Parry, W. T. & Bowman, J. R. Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones, southeastern Utah. Am. Assoc. Petrol. Geol. Bull. 84, 1281–1310 (2000)
    CAS Google Scholar
  5. Chan, M. A. & Parry, W. T. Rainbow of rocks: mysteries of sandstone colors and concretions in Colorado Plateau Canyon Country. (Utah Geological Survey Public Information Service, Salt Lake City, Utah, 2002); 〈http://www.ugs.state.ut.us/online/pdf/pi-77.pdf〉.
  6. Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L. & Malin, M. C. Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res. 106, 23873–23885 (2001)
    Article ADS CAS Google Scholar
  7. Newsom, H. E. et al. Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: Implications for the formation of hematite deposits on Mars. J. Geophys. Res. 108, doi:10.1029/2002JE001993 (2003)
  8. Catling, D. C. & Moore, J. M. The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars. Icarus 165, 277–300 (2003)
    Article ADS CAS Google Scholar
  9. Hynek, B. M., Arvidson, R. E. & Phillips, R. J. Geological setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107, doi:10.1029/2002JE001891 (2002)
  10. Ormö, J. & Komatsu, G. Hydrocarbon related bleaching of strata and hematite deposition in red beds at Moab, Utah: A possible analogous process that formed bright layers and hematite deposits on Mars. Lunar Planet. Sci. Conf. XXXIV [online] Abstr. 1356, 〈http://www.lpi.usra.edu/meetings/lpsc2003〉 (2003)
  11. Beitler, B., Ormö, J., Komatsu, G., Chan, M. A. & Parry, W. T. Geomorphic and diagenetic analogs to hematite regions on Mars: Examples from Jurassic Sandstones of Southern Utah, USA. Lunar Planet. Sci. Conf. XXXV [online] Abstr. 1289, 〈http://www.lpi.usra.edu/meetings/lpsc2004〉 (2004)
  12. Antonellini, M. & Aydin, A. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. Am. Assoc. Petrol. Geol. Bull 79, 642–671 (1995)
    Google Scholar
  13. Hood, J. W. & Patterson, D. J. Bedrock Aquifers in the Northern San Rafael Swell Area, Utah, with Special Emphasis on the Navajo Sandstone. Technical Publication 78 (Utah Department of National Research, 1984).
  14. Chan, M. A., Parry, W. T., Petersen, E. U. & Hall, C. M. 40Ar-39Ar age and chemistry of manganese mineralization in the Moab to Lisbon fault systems, southeastern Utah. Geology 29, 331–334 (2001)
    Article ADS CAS Google Scholar
  15. Beitler, B., Parry, W. T. & Chan, M. A. Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide Highs: Evidence of exhumed hydrocarbon supergiants? Geology 31, 1041–1044 (2003)
    Article ADS CAS Google Scholar
  16. Parry, W. T., Chan, M. A. & Beitler, B. Chemical bleaching indicates fluid flow in sandstone deformation bands. Am. Assoc. Petrol. Geol. Bull. 88, 175–191 (2004)
    CAS Google Scholar
  17. Beitler, B., Chan, M. A. & Parry, W. T. Field mapping and multispectral analysis of Jurassic Navajo Sandstone color and iron mineralization, Grand Staircase-Escalante National Monument, Utah. Geol. Soc. Am. Abstr. 34, 277 (2002)
    Google Scholar
  18. Ortoleva, P. T. Geochemical Self-Organization (Oxford Univ. Press, 1994)
    Google Scholar
  19. Cornell, R. M. & Schwertmann, U. The iron oxides: Structures, properties, reactions, occurrences and uses. (VCH, New York, 1996)
  20. Adamovic, J. in Ironstones Pseudokarst Reports 2 (eds Adamovic, J. & Cilek, V.) 7–40 (Czech Speleological Society, Zlaty Kun, Prague, 2002)
    Google Scholar
  21. Nuccio, V. F. & Condon, S. M. Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the middle Pennsylvanian Paradox Formation. US Geol. Surv. Bull. 76, O1–O41 (1996)
    Google Scholar
  22. Morgan, P. & Gosnold, W. D. in Geophysical Framework of the Continental United States (eds Pakiser, L. C. & Mooney, W. D.) 493–522 (Geological Society of America Memoirs Vol. 172, Boulder, Colorado, 1989)
    Book Google Scholar
  23. Minitti, M. E., Lane, M. D. & Bishop, J. L. A new hematite formation mechanism for Mars. Lunar Planet. Sci. Conf. XXXV [online] Abstr. 1999, 〈http://www.lpi.usra.edu/meetings/lpsc2004〉 (2004)
  24. Hoffman, N. White Mars: A new model for Mars' surface and atmosphere based on CO2 . Icarus 146, 326–342 (2000)
    Article ADS CAS Google Scholar
  25. Fernández-Remolar, D. et al. The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars. Planet. Space Sci. 53, 239–248 (2004)
    Article ADS Google Scholar

Download references