Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting (original) (raw)

References

  1. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001)
    Article CAS Google Scholar
  2. Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993 (2002)
    CAS PubMed Google Scholar
  3. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999)
    Article CAS Google Scholar
  4. Torres, R. M. & Kühn, R. Laboratory Protocols for Conditional Gene Targeting (Oxford Univ. Press, 1997)
    Google Scholar
  5. Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001)
    Article ADS CAS Google Scholar
  6. Lomeli, H., Ramos-Mejia, V., Gertsenstein, M., Lobe, C. G. & Nagy, A. Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis 26, 116–117 (2000)
    Article CAS Google Scholar
  7. Ueda, T. et al. The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells 5, 649–659 (2000)
    Article CAS Google Scholar
  8. Davis, T. L., Yang, G. J., McCarrey, J. R. & Bartolomei, M. S. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet. 9, 2885–2894 (2000)
    Article CAS Google Scholar
  9. Obata, Y. & Kono, T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J. Biol. Chem. 277, 5285–5289 (2002)
    Article CAS Google Scholar
  10. Lucifero, D., Mann, M. R. W., Bartolomei, M. S. & Trasler, J. M. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13, 839–849 (2004)
    Article CAS Google Scholar
  11. Ferguson-Smith, A. C. & Surani, M. A. Imprinting and the epigenetic asymmetry between parental genomes. Science 293, 1086–1089 (2001)
    Article CAS Google Scholar
  12. Clark, S. J., Harrison, J., Paul, C. L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994)
    Article CAS Google Scholar
  13. Chen, T., Ueda, Y., Xie, S. & Li, E. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J. Biol. Chem. 277, 38746–38754 (2002)
    Article CAS Google Scholar
  14. Chedin, F., Lieber, M. R. & Hsieh, C. L. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc. Natl Acad. Sci. USA 99, 16916–16921 (2002)
    Article ADS CAS Google Scholar
  15. Cerrato, F. et al. Paternal imprints can be established on the maternal Igf2–H19 locus without altering replication timing of DNA. Hum. Mol. Genet. 12, 3123–3132 (2003)
    Article CAS Google Scholar
  16. Fisher, R. A. et al. The maternally transcribed gene p57KIP2 (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum. Mol. Genet. 11, 3267–3272 (2002)
    Article CAS Google Scholar
  17. Judson, H., Hayward, B. E., Sheridan, E. & Bonthron, D. T. A global disorder of imprinting in the human female germ line. Nature 416, 539–542 (2002)
    Article ADS CAS Google Scholar
  18. El-Maarri, O. et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum. Mol. Genet. 12, 1405–1413 (2003)
    Article CAS Google Scholar
  19. Hayward, B. E. et al. Lack of involvement of known DNA methyltransferases in familial hydatidiform mole implies the involvement of other factors in establishment of imprinting in the human female germline. BMC Genet. 4, 2 (2003)
    Article CAS Google Scholar
  20. Sado, T., Okano, M., Li, E. & Sasaki, H. De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. Development 131, 975–982 (2004)
    Article CAS Google Scholar
  21. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992)
    Article CAS Google Scholar
  22. Xu, X. et al. Direct removal in the mouse of a floxed neo gene from a three-loxP conditional knockout allele by two novel approaches. Genesis 30, 1–6 (2001)
    Article MathSciNet Google Scholar
  23. Hashimoto, N., Kubokawa, R., Yamazaki, K., Noguchi, M. & Kato, Y. Germ cell deficiency causes testis cord differentiation in reconstituted mouse fetal ovaries. J. Exp. Zool. 253, 61–70 (1990)
    Article CAS Google Scholar
  24. Bao, S., Obata, Y., Carroll, J., Domeki, I. & Kono, T. Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol. Reprod. 62, 616–621 (2000)
    Article CAS Google Scholar

Download references