A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response (original) (raw)
References
Tiruviluamala, P. & Reichman, L. B. Tuberculosis. Annu. Rev. Publ. Health23, 403–426 (2002) Article Google Scholar
Sreevatsan, S. et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl Acad. Sci. USA94, 9869–9874 (1997) ArticleADSCASPubMedPubMed Central Google Scholar
Fleischmann, R. D. et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol.184, 5479–5490 (2002) ArticleCASPubMedPubMed Central Google Scholar
North, R. J., Ryan, L., LaCource, R., Mogues, T. & Goodrich, M. E. Growth rate of mycobacteria in mice as an unreliable indicator of mycobacterial virulence. Infect. Immun.67, 5483–5485 (1999) CASPubMedPubMed Central Google Scholar
Manca, C. et al. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J. Immunol.162, 6740–6746 (1999) CASPubMed Google Scholar
Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc. Natl Acad. Sci. USA98, 5752–5757 (2001) ArticleADSCASPubMedPubMed Central Google Scholar
Valway, S. E. et al. An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N. Engl. J. Med.338, 633–639 (1998) ArticleCASPubMed Google Scholar
Bifani, P. J., Mathema, B., Kurepina, N. E. & Kreiswirth, B. N. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol.10, 45–52 (2002) ArticleCASPubMed Google Scholar
Glynn, J. R., Whiteley, J., Bifani, P. J., Kremer, K. & van Soolingen, D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg. Infect. Dis.8, 843–849 (2002) ArticlePubMedPubMed Central Google Scholar
Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393, 537–544 (1998) ArticleADSCASPubMed Google Scholar
Manca, C. et al. Differential monocyte activation underlies strain specific M. tuberculosis pathogenesis. Infect. Immun. (in the press)
Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature402, 79–83 (1999) ArticleADSCASPubMed Google Scholar
Sirakova, T. D., Thirumala, A. K., Dubey, V. S., Sprecher, H. & Kolattukudy, P. E. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J. Biol. Chem.276, 16833–16839 (2001) ArticleCASPubMed Google Scholar
Constant, P. et al. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methly esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J. Biol. Chem.277, 38148–38158 (2002) ArticleCASPubMed Google Scholar
Marmiesse, M. et al. Macro-array and bioinformatic analyses reveal mycobacterial ‘core’ genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiol.150, 483–496 (2004) ArticleCAS Google Scholar
Kolattukudy, P. E., Fernandes, N. D., Azad, A. K., Fitzmaurice, A. M. & Sirakova, T. D. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol.24, 263–270 (1997) ArticleCASPubMed Google Scholar
Vergne, I. I. & Daffe, M. Interaction of mycobacterial glycolipids with host cells. Front. Biosci.3, 865–876 (1998) Article Google Scholar
Hunter, S. W. & Brennan, P. J. A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J. Bacteriol.147, 728–735 (1981) CASPubMedPubMed Central Google Scholar
Mehra, V., Brennan, P. J., Rada, E., Convit, J. & Bloom, B. R. Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid. Nature308, 194–196 (1984) ArticleADSCASPubMed Google Scholar
Fournie, J.-J., Adams, E., Mullins, R. J. & Basten, A. Inhibition of human lymphoproliferative responses by mycobacterial phenolic glycolipids. Infect. Immun.57, 3653–3659 (1989) CASPubMedPubMed Central Google Scholar
Vachula, K., Holzer, T. J. & Andersen, B. R. suppression of monocyte oxidative responses by phenolic glycolipid 1 of Mycobacterium leprae. J. Immunol.142, 1696–1701 (1989) CASPubMed Google Scholar
Silva, C. L., Faccioli, L. H. & Foss, N. T. Suppression of human monocyte cytokine release by phenolic glycolipid-1 of Mycobacterium leprae. Int. J. Lepr.61, 107–108 (1993) CAS Google Scholar
Hashimoto, K. et al. Mycobacterium leprae infection in monocyte-derived dendritic cells and its influence on antigen-presenting function. Infect. Immun.70, 5167–5176 (2002) ArticleCASPubMedPubMed Central Google Scholar
Ng, V. et al. Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell103, 511–524 (2000) ArticleCASPubMed Google Scholar
Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol.3, 23–35 (2003) ArticleCAS Google Scholar
Garbe, T. R. et al. Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiol.140, 133–138 (1994) ArticleCAS Google Scholar
Pelicic, V. et al. Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA94, 10955–10960 (1997) ArticleADSCASPubMedPubMed Central Google Scholar
O'Gaora, P. et al. Mycobacteria as immunogens: development of expression vectors for use in multiple mycobacterial species. Med. Princ. Prac.6, 91–96 (1997) Article Google Scholar
Slayden, R. A. & Barry, C. E. III in Mycobacterium tuberculosis protocols (eds Parish, T. & Stoker, N. G.) 229–245 (Humana, New Jersey, 2001) Book Google Scholar