A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response (original) (raw)

References

  1. Tiruviluamala, P. & Reichman, L. B. Tuberculosis. Annu. Rev. Publ. Health 23, 403–426 (2002)
    Article Google Scholar
  2. Sreevatsan, S. et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl Acad. Sci. USA 94, 9869–9874 (1997)
    Article ADS CAS PubMed PubMed Central Google Scholar
  3. Fleischmann, R. D. et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184, 5479–5490 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  4. North, R. J., Ryan, L., LaCource, R., Mogues, T. & Goodrich, M. E. Growth rate of mycobacteria in mice as an unreliable indicator of mycobacterial virulence. Infect. Immun. 67, 5483–5485 (1999)
    CAS PubMed PubMed Central Google Scholar
  5. Manca, C. et al. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J. Immunol. 162, 6740–6746 (1999)
    CAS PubMed Google Scholar
  6. Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc. Natl Acad. Sci. USA 98, 5752–5757 (2001)
    Article ADS CAS PubMed PubMed Central Google Scholar
  7. Valway, S. E. et al. An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N. Engl. J. Med. 338, 633–639 (1998)
    Article CAS PubMed Google Scholar
  8. Bifani, P. J., Mathema, B., Kurepina, N. E. & Kreiswirth, B. N. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol. 10, 45–52 (2002)
    Article CAS PubMed Google Scholar
  9. Glynn, J. R., Whiteley, J., Bifani, P. J., Kremer, K. & van Soolingen, D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg. Infect. Dis. 8, 843–849 (2002)
    Article PubMed PubMed Central Google Scholar
  10. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998)
    Article ADS CAS PubMed Google Scholar
  11. Manca, C. et al. Differential monocyte activation underlies strain specific M. tuberculosis pathogenesis. Infect. Immun. (in the press)
  12. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999)
    Article ADS CAS PubMed Google Scholar
  13. Sirakova, T. D., Thirumala, A. K., Dubey, V. S., Sprecher, H. & Kolattukudy, P. E. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J. Biol. Chem. 276, 16833–16839 (2001)
    Article CAS PubMed Google Scholar
  14. Constant, P. et al. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methly esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J. Biol. Chem. 277, 38148–38158 (2002)
    Article CAS PubMed Google Scholar
  15. Marmiesse, M. et al. Macro-array and bioinformatic analyses reveal mycobacterial ‘core’ genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiol. 150, 483–496 (2004)
    Article CAS Google Scholar
  16. Kolattukudy, P. E., Fernandes, N. D., Azad, A. K., Fitzmaurice, A. M. & Sirakova, T. D. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 24, 263–270 (1997)
    Article CAS PubMed Google Scholar
  17. Vergne, I. I. & Daffe, M. Interaction of mycobacterial glycolipids with host cells. Front. Biosci. 3, 865–876 (1998)
    Article Google Scholar
  18. Hunter, S. W. & Brennan, P. J. A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J. Bacteriol. 147, 728–735 (1981)
    CAS PubMed PubMed Central Google Scholar
  19. Mehra, V., Brennan, P. J., Rada, E., Convit, J. & Bloom, B. R. Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid. Nature 308, 194–196 (1984)
    Article ADS CAS PubMed Google Scholar
  20. Fournie, J.-J., Adams, E., Mullins, R. J. & Basten, A. Inhibition of human lymphoproliferative responses by mycobacterial phenolic glycolipids. Infect. Immun. 57, 3653–3659 (1989)
    CAS PubMed PubMed Central Google Scholar
  21. Vachula, K., Holzer, T. J. & Andersen, B. R. suppression of monocyte oxidative responses by phenolic glycolipid 1 of Mycobacterium leprae. J. Immunol. 142, 1696–1701 (1989)
    CAS PubMed Google Scholar
  22. Silva, C. L., Faccioli, L. H. & Foss, N. T. Suppression of human monocyte cytokine release by phenolic glycolipid-1 of Mycobacterium leprae. Int. J. Lepr. 61, 107–108 (1993)
    CAS Google Scholar
  23. Hashimoto, K. et al. Mycobacterium leprae infection in monocyte-derived dendritic cells and its influence on antigen-presenting function. Infect. Immun. 70, 5167–5176 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  24. Ng, V. et al. Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103, 511–524 (2000)
    Article CAS PubMed Google Scholar
  25. Stover, C. K. et al. New use of BCG for recombinant vaccines. Nature 351, 456–460 (1991)
    Article ADS CAS PubMed Google Scholar
  26. Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003)
    Article CAS Google Scholar
  27. Garbe, T. R. et al. Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiol. 140, 133–138 (1994)
    Article CAS Google Scholar
  28. Pelicic, V. et al. Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 94, 10955–10960 (1997)
    Article ADS CAS PubMed PubMed Central Google Scholar
  29. O'Gaora, P. et al. Mycobacteria as immunogens: development of expression vectors for use in multiple mycobacterial species. Med. Princ. Prac. 6, 91–96 (1997)
    Article Google Scholar
  30. Slayden, R. A. & Barry, C. E. III in Mycobacterium tuberculosis protocols (eds Parish, T. & Stoker, N. G.) 229–245 (Humana, New Jersey, 2001)
    Book Google Scholar

Download references