Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands (original) (raw)

References

  1. Hille, B., Armstrong, C. M. & MacKinnon, R. Ion channels: From idea to reality. Nature Med. 5, 1105–1109 (1999)
    Article CAS Google Scholar
  2. Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1609 (2000)
    Article ADS CAS Google Scholar
  3. Karplus, M. & Petsko, G. A. Molecular dynamics simulations in biology. Nature 347, 631–639 (1990)
    Article ADS CAS Google Scholar
  4. Eisenman, G. Cation selective electrodes and their mode of operation. Biophys. J. 2, 259–323 (1962)
    Article ADS CAS Google Scholar
  5. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)
    Article ADS CAS Google Scholar
  6. Morais-Cabral, J. H., Zhou, Y. F. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001)
    Article ADS CAS Google Scholar
  7. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001)
    Article ADS CAS Google Scholar
  8. Eisenman, G. & Horn, R. Ion selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76, 197–225 (1983)
    Article CAS Google Scholar
  9. Latorre, R. & Miller, C. Conduction and selectivity in potassium channels. J. Membr. Biol. 71, 11–30 (1983)
    Article CAS Google Scholar
  10. Hille, B. Ion Channels of Excitable Membranes 3rd edn (Sinauer, Sunderland, Massachusetts, 2001)
    Google Scholar
  11. Neyton, J. & Miller, C. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J. Gen. Physiol. 92, 569–596 (1988)
    Article CAS Google Scholar
  12. LeMasurier, M., Heginbotham, L. & Miller, C. KscA: it's a potassium channel. J. Gen. Physiol. 118, 303–314 (2001)
    Article CAS Google Scholar
  13. Nimigean, C. M. & Miller, C. Na+ block and permeation in K+ channel of known structure. J. Gen. Physiol. 120, 323–325 (2002)
    Article CAS Google Scholar
  14. Pauling, L. Nature of the Chemical Bond and Structure of Molecules and Crystals 3rd edn (Cornell Univ. Press, Ithaca, 1960)
    Google Scholar
  15. Allen, T. W., Andersen, O. S. & Roux, B. On the importance of atomic fluctuations, protein flexibility and solvent in ion permeation. J. Gen. Physiol. (in the press)
  16. Åqvist, J. & Luzhkov, V. Ion permeation mechanism of the potassium channel. Nature 404, 881–884 (2000)
    Article ADS Google Scholar
  17. Luzhkov, V. B. & Åqvist, J. K+/Na+ selectivity of the KcsA potassium channel from microscopic free energy perturbation calculations. Biochim. Biophys. Acta 1548, 194–202 (2001)
    Article CAS Google Scholar
  18. Allen, T. W., Bliznyuk, A., Rendell, A. P., Kyuucak, S. & Chung, S. H. The potassium channel: Structure, selectivity and diffusion. J. Chem. Phys. 112, 8191–8204 (2000)
    Article ADS CAS Google Scholar
  19. Bernèche, S. & Roux, B. Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001)
    Article ADS Google Scholar
  20. Bernèche, S. & Roux, B. A microscopic view of ion conduction through the K+ channel. Proc. Natl Acad. Sci. USA 100, 8644–8648 (2003)
    Article ADS Google Scholar
  21. Shrivastava, I. H., Tieleman, D. P., Biggin, P. C. & Sansom, M. S. P. K+ versus Na+ ions in a K channel selectivity filter: A simulation study. Biophys. J. 83, 633–645 (2002)
    Article ADS CAS Google Scholar
  22. Guidoni, L., Torre, V. & Carloni, P. Potassium and sodium binding to the outer mouth of the K+ channe. Biochemistry 38, 8599–8604 (1999)
    Article CAS Google Scholar
  23. Loboda, A., Melishchuk, A. & Armstrong, C. Dilated and defunct K channels in the absence of K+. Biophys. J. 80, 2704–2714 (2001)
    Article CAS Google Scholar
  24. Zhou, Y. F. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003)
    Article CAS Google Scholar
  25. Yamashita, M. M., Wesson, L., Eisenman, G. & Eisenberg, D. Where metal ions bind in proteins. Proc. Natl Acad. Sci. USA 87, 5648–5652 (1990)
    Article ADS CAS Google Scholar
  26. Åqvist, J., Alvarez, O. & Eisenman, G. Ion-selective properties of a small ionophore in methanol studied by free energy perturbation simulations. J. Phys. Chem. 96, 10019–10025 (1992)
    Article Google Scholar
  27. Marrone, T. J. & Merz, K. M. Jr. Molecular recognition of K+ and Na+ by valinomycin in methanol. J. Am. Chem. Soc. 117, 779–791 (1995)
    Article CAS Google Scholar
  28. MacKerell, A. D. J. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)
    Article CAS Google Scholar
  29. Weeks, J. D., Chandler, D. & Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971)
    Article ADS CAS Google Scholar
  30. Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nature Neurosci. 4, 239–246 (2001)
    Article CAS Google Scholar
  31. Heinemann, S. H., Terlau, H., Stuhmer, W., Imoto, K. & Numa, S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443 (1992)
    Article ADS CAS Google Scholar
  32. Brooks, B. R. et al. CHARMM: a program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)
    Article CAS Google Scholar

Download references