Regulation of p53 activity through lysine methylation (original) (raw)
References
Jenuwein, T. & Allis, C. D. Translating the histone code. Science293, 1074–1080 (2001) ArticleCAS Google Scholar
Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell8, 1207–1217 (2001) ArticleCAS Google Scholar
Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev.16, 479–489 (2002) ArticleCAS Google Scholar
Appella, E. & Anderson, C. W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem.268, 2764–2772 (2001) ArticleCAS Google Scholar
Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell91, 325–334 (1997) ArticleCAS Google Scholar
Momand, J., Wu, H. H. & Dasgupta, G. MDM2—master regulator of the p53 tumor suppressor protein. Gene242, 15–29 (2000) ArticleCAS Google Scholar
Brooks, C. L. & Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol.15, 164–171 (2003) ArticleCAS Google Scholar
Li, M., Luo, J., Brooks, C. L. & Gu, W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem.277, 50607–50611 (2002) ArticleCAS Google Scholar
Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl Acad. Sci. USA101, 2259–2264 (2004) ArticleADSCAS Google Scholar
Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90, 595–606 (1997) ArticleCAS Google Scholar
Barlev, N. A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell8, 1243–1254 (2001) ArticleCAS Google Scholar
Gu, W., Luo, J., Brooks, C. L., Nikolaev, A. Y. & Li, M. Dynamics of the p53 acetylation pathway. Nov. Found. Symp.259, 197–205 (2004) CAS Google Scholar
Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. Embo J.18, 6462–6471 (1999) ArticleCAS Google Scholar
Kwek, S. S., Derry, J., Tyner, A. L., Shen, Z. & Gudkov, A. V. Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene20, 2587–2599 (2001) ArticleCAS Google Scholar
Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. Embo J.18, 6455–6461 (1999) ArticleCAS Google Scholar
Kouskouti, A., Scheer, E., Staub, A., Tora, L. & Talianidis, I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol. Cell14, 175–182 (2004) ArticleCAS Google Scholar
Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature421, 652–656 (2003) ArticleADSCAS Google Scholar
Grand, R. J. et al. The high levels of p53 present in adenovirus early region 1-transformed human cells do not cause up-regulation of MDM2 expression. Virology210, 323–334 (1995) ArticleCAS Google Scholar
Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. SET domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem.276, 25309–25317 (2001) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 552–562 (SERC Daresbury Laboratory, Warrington, 1993) Google Scholar
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)