Contributions of an avian basal ganglia–forebrain circuit to real-time modulation of song (original) (raw)

References

  1. Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994)
    Article ADS CAS Google Scholar
  2. Bottjer, S. W., Miesner, E. A. & Arnold, A. P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903 (1984)
    Article ADS CAS Google Scholar
  3. Scharff, C. & Nottebohm, F. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11, 2896–2913 (1991)
    Article CAS Google Scholar
  4. Brainard, M. S. & Doupe, A. J. Interruption of a basal ganglia–forebrain circuit prevents plasticity of learned vocalizations. Nature 404, 762–766 (2000)
    Article ADS CAS Google Scholar
  5. Williams, H. & Mehta, N. Changes in adult zebra finch song require a forebrain nucleus that is not necessary for song production. J. Neurobiol. 39, 14–28 (1999)
    Article CAS Google Scholar
  6. Tchernichovski, O., Mitra, P. P., Lints, T. & Nottebohm, F. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001)
    Article ADS CAS Google Scholar
  7. Williams, H., Cynx, J. & Nottebohm, F. Timbre control in zebra finch (Taeniopygia guttata) song syllables. J. Comp. Psychol. 103, 366–380 (1989)
    Article CAS Google Scholar
  8. Nottebohm, F., Stokes, T. M. & Leonard, C. M. Central control of song in the canary. J. Comp. Neurol. 165, 457–486 (1976)
    Article CAS Google Scholar
  9. Perkel, D. J. in Behavioral Neurobiology of Birdsong (eds Zeigler, H. P. & Marler, P.) 736–748 (New York Academy of Sciences, New York, 2004)
    Google Scholar
  10. Troyer, T. W. & Doupe, A. J. An associational model of birdsong sensorimotor learning. II. Temporal hierarchies and the learning of song sequence. J. Neurophys. 84, 1224–1239 (2000)
    Article CAS Google Scholar
  11. Doya, K. & Sejnowski, T. J. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 469–482 (MIT Press, Cambridge, Massachusetts, 2000)
    Google Scholar
  12. Hessler, N. A. & Doupe, A. J. Social context modulates singing-related neural activity in the songbird forebrain. Nature Neurosci. 2, 209–211 (1999)
    Article CAS Google Scholar
  13. Hessler, N. A. & Doupe, A. J. Singing-related neural activity in a dorsal forebrain–basal ganglia circuit of adult zebra finches. J. Neurosci. 19, 10461–10481 (1999)
    Article CAS Google Scholar
  14. Vu, E. T., Mazurek, M. E. & Kuo, Y. C. Identification of a forebrain motor programming network for the learned song of zebra finches. J. Neurosci. 14, 6924–6934 (1994)
    Article CAS Google Scholar
  15. Vicario, D. S. & Simpson, H. B. Electrical stimulation in forebrain nuclei elicits learned vocal patterns in songbirds. J. Neurophys. 73, 2602–2607 (1995)
    Article CAS Google Scholar
  16. Brumm, H. & Todt, D. Male–male vocal interactions and the adjustment of song amplitude in a territorial bird. Anim. Behav. 67, 281–286 (2004)
    Article Google Scholar
  17. Yu, A. C. & Margoliash, D. Temporal hierarchical control of singing in birds. Science 273, 1871–1875 (1996)
    Article ADS CAS Google Scholar
  18. Johnson, F., Sablan, M. M. & Bottjer, S. W. Topographic organization of a forebrain pathway involved with vocal learning in zebra finches. J. Comp. Neurol. 358, 260–278 (1995)
    Article CAS Google Scholar
  19. Mooney, R. Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch. J. Neurosci. 20, 5420–5436 (2000)
    Article CAS Google Scholar
  20. Jarvis, E. D., Scharff, C., Grossman, M. R., Ramos, J. A. & Nottebohm, F. For whom the bird sings: context-dependent gene expression. Neuron 21, 775–788 (1998)
    Article CAS Google Scholar
  21. Hikosaka, O., Nakamura, K., Sakai, K. & Nakahara, H. Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222 (2002)
    Article CAS Google Scholar
  22. Miller, E. K. The prefrontal cortex and cognitive control. Nature Rev. Neurosci. 1, 59–65 (2000)
    Article CAS Google Scholar
  23. Troyer, T. W. & Bottjer, S. W. Birdsong: models and mechanisms. Curr. Opin. Neurobiol. 11, 721–726 (2001)
    Article CAS Google Scholar
  24. Mooney, R. & Konishi, M. Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons. Proc. Natl Acad. Sci. USA 88, 4075–4079 (1991)
    Article ADS CAS Google Scholar
  25. Kittelberger, J. M. & Mooney, R. Lesions of an avian forebrain nucleus that disrupt song development alter synaptic connectivity and transmission in the vocal premotor pathway. J. Neurosci. 19, 9385–9398 (1999)
    Article CAS Google Scholar
  26. Stark, L. L. & Perkel, D. J. Two-stage input-specific synaptic maturation in a nucleus essential for vocal production in the zebra finch. J. Neurosci. 19, 9107–9116 (1999)
    Article CAS Google Scholar
  27. Komatsu, H. & Wurtz, R. H. Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J. Neurophys. 62, 31–47 (1989)
    Article CAS Google Scholar
  28. Tanaka, M. & Lisberger, S. G. Regulation of the gain of visually guided smooth-pursuit eye movements by frontal cortex. Nature 409, 191–194 (2001)
    Article ADS CAS Google Scholar
  29. Canales, J. J. & Graybiel, A. M. A measure of striatal function predicts motor stereotypy. Nature Neurosci. 3, 377–383 (2000)
    Article CAS Google Scholar
  30. Matsumoto, N., Hanakawa, T., Maki, S., Graybiel, A. M. & Kimura, M. Nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J. Neurophys. 82, 978–997 (1999)
    Article CAS Google Scholar

Download references