Recognition of transmembrane helices by the endoplasmic reticulum translocon (original) (raw)

References

  1. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. Predicting transmembrane protein topology with a hidden Markov model. Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)
    Article CAS Google Scholar
  2. von Heijne, G. Recent advances in the understanding of membrane protein assembly and structure. Q. Rev. Biophys. 32, 285–307 (2000)
    Article Google Scholar
  3. von Heijne, G. Membrane protein assembly in vivo. Adv. Protein Chem. 63, 1–18 (2003)
    Article CAS Google Scholar
  4. Snapp, E., Reinhart, G., Bogert, B., Lippincott-Schwartz, J. & Hegde, R. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 164, 997–1007 (2004)
    Article CAS Google Scholar
  5. Rapoport, T. A., Goder, V., Heinrich, S. U. & Matlack, K. E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568–575 (2004)
    Article CAS Google Scholar
  6. Alder, N. N. & Johnson, A. E. Cotranslational membrane protein biogenesis at the endoplasmic reticulum. J. Biol. Chem. 279, 22787–22790 (2004)
    Article CAS Google Scholar
  7. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)
    Article CAS Google Scholar
  8. Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding. Cell 116, 725–736 (2004)
    Article CAS Google Scholar
  9. de Planque, M. R. R. & Killian, J. A. Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol. Membr. Biol. 20, 271–284 (2003)
    Article CAS Google Scholar
  10. White, S. H. & Wimley, W. C. Membrane protein folding and stability: Physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999)
    Article CAS Google Scholar
  11. Ulmschneider, M. B. & Sansom, M. S. P. Amino acid distributions in integral membrane protein structures. Biochim. Biophys. Acta 1512, 1–14 (2001)
    Article CAS Google Scholar
  12. Beuming, T. & Weinstein, H. A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins. Bioinformatics 20, 1822–1835 (2004)
    Article CAS Google Scholar
  13. Sääf, A., Wallin, E. & von Heijne, G. Stop-transfer function of pseudo-random amino acid segments during translocation across prokaryotic and eukaryotic membranes. Eur. J. Biochem. 251, 821–829 (1998)
    Article Google Scholar
  14. Wimley, W. C., Creamer, T. P. & White, S. H. Solvation energies of amino acid sidechains and backbone in a family of host-guest pentapeptides. Biochemistry 35, 5109–5124 (1996)
    Article CAS Google Scholar
  15. Jayasinghe, S., Hristova, K. & White, S. H. Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 312, 927–934 (2001)
    Article CAS Google Scholar
  16. Cornette, J. L. et al. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J. Mol. Biol. 195, 659–685 (1987)
    Article CAS Google Scholar
  17. Degli Esposti, M., Crimi, M. & Venturoli, G. A critical evaluation of the hydropathy profile of membrane proteins. Eur. J. Biochem. 190, 207–219 (1990)
    Article CAS Google Scholar
  18. Heinrich, S., Mothes, W., Brunner, J. & Rapoport, T. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000)
    Article CAS Google Scholar
  19. Lu, L. P. & Deber, C. M. Guidelines for membrane protein engineering derived from de novo designed model peptides. Biopolymers 47, 41–62 (1998)
    Article Google Scholar
  20. Bechinger, B. Membrane insertion and orientation of polyalanine peptides: A N-15 solid-state NMR spectroscopy investigation. Biophys. J. 81, 2251–2256 (2001)
    Article ADS CAS Google Scholar
  21. Lewis, R. N. et al. A polyalanine-based peptide cannot form a stable transmembrane alpha-helix in fully hydrated phospholipid bilayers. Biochemistry 40, 12103–12111 (2001)
    Article MathSciNet CAS Google Scholar
  22. Wallin, E., Tsukihara, T., Yoshikawa, S., von Heijne, G. & Elofsson, A. Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci. 6, 808–815 (1997)
    Article CAS Google Scholar
  23. Killian, J. A. & von Heijne, G. How proteins adapt to a membrane-water interface. Trends Biochem. Sci. 25, 429–434 (2000)
    Article CAS Google Scholar
  24. Yau, W. M., Wimley, W. C., Gawrisch, K. & White, S. H. The preference of tryptophan for membrane interfaces. Biochemistry 37, 14713–14718 (1998)
    Article CAS Google Scholar
  25. Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Struct. Biol. 3, 842–848 (1996)
    Article CAS Google Scholar
  26. Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125–142 (1984)
    Article CAS Google Scholar
  27. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998)
    Article CAS Google Scholar
  28. McCormick, P. J., Miao, Y., Shao, Y., Lin, J. & Johnson, A. E. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329–341 (2003)
    Article CAS Google Scholar
  29. Presta, L. G. & Rose, G. D. Helix signals in proteins. Science 240, 1632–1641 (1988)
    Article ADS CAS Google Scholar
  30. Richardson, J. S. & Richardson, D. C. Amino acid preferences for specific locations at the ends of α-helices. Science 240, 1648–1652 (1988)
    Article ADS CAS Google Scholar
  31. Yohannan, S. et al. Proline substitutions are not easily accommodated in a membrane protein. J. Mol. Biol. 341, 1–6 (2004)
    Article CAS Google Scholar
  32. Kuroiwa, T., Sakaguchi, M., Mihara, K. & Omura, T. Systematic analysis of stop-transfer sequence for microsomal membrane. J. Biol. Chem. 266, 9251–9255 (1991)
    CAS PubMed Google Scholar
  33. Anthony, V. & Skach, W. R. Molecular mechanism of P-glycoprotein assembly into cellular membranes. Curr. Protein Pept. Sci. 3, 485–501 (2002)
    Article CAS Google Scholar
  34. Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999)
    Article CAS Google Scholar
  35. Liljeström, P. & Garoff, H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9, 1356–1361 (1991)
    Article Google Scholar
  36. Liljeström, P., Lusa, S., Huylebroeck, D. & Garoff, H. In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J. Virol. 65, 4107–4113 (1991)
    PubMed PubMed Central Google Scholar

Download references