Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones (original) (raw)

References

  1. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003)
    Article ADS CAS Google Scholar
  2. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002)
    Article CAS Google Scholar
  3. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000)
    Article ADS CAS Google Scholar
  4. Henley, J. & Poo, M. M. Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron 44, 909–916 (2004)
    Article CAS Google Scholar
  5. Henley, J. & Poo, M. M. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol. 14, 320–330 (2004)
    Article CAS Google Scholar
  6. Nishiyama, M. et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423, 990–995 (2003)
    Article ADS CAS Google Scholar
  7. Ming, G. L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 (1997)
    Article MathSciNet CAS Google Scholar
  8. Kim, S. J. et al. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426, 285–291 (2003)
    Article ADS CAS Google Scholar
  9. Li, H. S., Xu, X. Z. & Montell, C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24, 261–273 (1999)
    Article CAS Google Scholar
  10. Zhu, X., Jiang, M. & Birnbaumer, L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J. Biol. Chem. 273, 133–142 (1998)
    Article CAS Google Scholar
  11. Schwarz, G., Droogmans, G. & Nilius, B. Multiple effects of SKF 96365 on ionic currents and intracellular calcium in human endothelial cells. Cell Calcium 15, 45–54 (1994)
    Article CAS Google Scholar
  12. Greka, A., Navarro, B., Oancea, E., Duggan, A. & Clapham, D. E. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nature Neurosci. 6, 837–845 (2003)
    Article CAS Google Scholar
  13. Song, H. J., Ming, G. L. & Poo, M. M. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997)
    Article ADS CAS Google Scholar
  14. Jung, S. et al. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J. Biol. Chem. 278, 3562–3571 (2003)
    Article CAS Google Scholar
  15. Inoue, R. et al. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2 + )-permeable cation channel. Circ. Res. 88, 325–332 (2001)
    Article CAS Google Scholar
  16. Gomez, T. M., Robles, E., Poo, M. & Spitzer, N. C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001)
    Article ADS CAS Google Scholar
  17. Li, Y. et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature doi:10.1038/nature03477 (this issue)
  18. Bobanovic, L. K. et al. Molecular cloning and immunolocalization of a novel vertebrate trp homologue from Xenopus . Biochem. J. 340, 593–599 (1999)
    Article CAS Google Scholar
  19. Brereton, H. M., Harland, M. L., Auld, A. M. & Barritt, G. J. Evidence that the TRP-1 protein is unlikely to account for store-operated Ca2+ inflow in Xenopus laevis oocytes. Mol. Cell. Biochem. 214, 63–74 (2000)
    Article CAS Google Scholar
  20. Lintschinger, B. et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J. Biol. Chem. 275, 27799–27805 (2000)
    CAS PubMed Google Scholar
  21. Strubing, C., Krapivinsky, G., Krapivinsky, L. & Clapham, D. E. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645–655 (2001)
    Article CAS Google Scholar
  22. Strubing, C., Krapivinsky, G., Krapivinsky, L. & Clapham, D. E. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J. Biol. Chem. 278, 39014–39019 (2003)
    Article Google Scholar
  23. Xu, X. Z., Li, H. S., Guggino, W. B. & Montell, C. Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89, 1155–1164 (1997)
    Article CAS Google Scholar
  24. Amiri, H., Schultz, G. & Schaefer, M. FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 33, 463–470 (2003)
    Article CAS Google Scholar
  25. Schaefer, M., Plant, T. D., Stresow, N., Albrecht, N. & Schultz, G. Functional differences between TRPC4 splice variants. J. Biol. Chem. 277, 3752–3759 (2002)
    Article CAS Google Scholar
  26. Goel, M., Sinkins, W. G. & Schilling, W. P. Selective association of TRPC channel subunits in rat brain synaptosomes. J. Biol. Chem. 277, 48303–48310 (2002)
    Article CAS Google Scholar
  27. Hofmann, T., Schaefer, M., Schultz, G. & Gudermann, T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl Acad. Sci. USA 99, 7461–7466 (2002)
    Article ADS CAS Google Scholar
  28. Lohof, A. M. et al. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261 (1992)
    Article CAS Google Scholar
  29. Gu, X. & Spitzer, N. C. Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J. Neurosci. 13, 4936–4948 (1993)
    Article CAS Google Scholar
  30. Schweitz, H. et al. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc. Natl Acad. Sci. USA 91, 878–882 (1994)
    Article ADS CAS Google Scholar

Download references