c-Myc-regulated microRNAs modulate E2F1 expression (original) (raw)

References

  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)
    Article CAS PubMed Google Scholar
  2. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004)
    Article ADS CAS PubMed Google Scholar
  3. Levens, D. Disentangling the MYC web. Proc. Natl Acad. Sci. USA 99, 5757–5759 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  4. Cole, M. D. & McMahon, S. B. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18, 2916–2924 (1999)
    Article CAS PubMed Google Scholar
  5. Bracken, A. P., Ciro, M., Cocito, A. & Helin, K. E2F target genes: unraveling the biology. Trends Biochem. Sci. 29, 409–417 (2004)
    Article CAS PubMed Google Scholar
  6. Leone, G., DeGregori, J., Sears, R., Jakoi, L. & Nevins, J. R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387, 422–426 (1997)
    Article ADS CAS PubMed Google Scholar
  7. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  8. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003)
    Article ADS CAS PubMed PubMed Central Google Scholar
  9. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  10. McManus, M. T. MicroRNAs and cancer. Semin. Cancer Biol. 13, 253–258 (2003)
    Article CAS PubMed Google Scholar
  11. Pajic, A. et al. Cell cycle activation by c-myc in a Burkitt lymphoma model cell line. Int. J. Cancer 87, 787–793 (2000)
    Article CAS PubMed Google Scholar
  12. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  13. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  14. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  15. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003)
    Article ADS CAS PubMed Google Scholar
  16. Cullen, B. R. Transcription and processing of human microRNA precursors. Mol. Cell 16, 861–865 (2004)
    Article CAS PubMed Google Scholar
  17. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004)
    Article CAS PubMed Google Scholar
  18. Guo, Q. M. et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res. 60, 5922–5928 (2000)
    CAS PubMed Google Scholar
  19. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997)
    CAS PubMed Google Scholar
  20. Zeller, K. I., Jegga, A. G., Aronow, B. J., O'Donnell, K. A. & Dang, C. V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003)
    Article PubMed PubMed Central Google Scholar
  21. Matsumura, I., Tanaka, H. & Kanakura, Y. E2F1 and c-Myc in cell growth and death. Cell Cycle 2, 333–338 (2003)
    Article CAS PubMed Google Scholar
  22. Zeller, K. I. et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J. Biol. Chem. 276, 48285–48291 (2001)
    Article CAS PubMed Google Scholar
  23. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)
    Article CAS PubMed Google Scholar
  24. Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  25. Hutvagner, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence-specific inhibition of small RNA function. PLoS Biol. 2, E98 (2004)
    Article PubMed PubMed Central Google Scholar
  26. Lin, Y. W. et al. Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur. J. Cancer 35, 1730–1734 (1999)
    Article CAS PubMed Google Scholar
  27. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004)
    Article ADS CAS PubMed PubMed Central Google Scholar
  28. Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K. & Kosik, K. S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  29. Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc. Natl Acad. Sci. USA 95, 13887–13892 (1998)
    Article ADS CAS PubMed PubMed Central Google Scholar
  30. Tanzer, A. & Stadler, P. F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004)
    Article CAS PubMed Google Scholar

Download references