Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants (original) (raw)
References
Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol.19, 1–11 (1999) ArticleCAS Google Scholar
Cole, M. D. Activation of the c-myc oncogene. Basic Life Sci.38, 399–406 (1986) CASPubMed Google Scholar
Spencer, C. A. & Groudine, M. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res.56, 1–48 (1991) ArticleCAS Google Scholar
Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl Acad. Sci. USA79, 7824–7827 (1982) ArticleADSCAS Google Scholar
Davis, M., Malcolm, S. & Rabbitts, T. H. Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells. Nature308, 286–288 (1984) ArticleADSCAS Google Scholar
Bhatia, K. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas. Nature Genet.5, 56–61 (1993) ArticleCAS Google Scholar
Albert, T., Urlbauer, B., Kohlhuber, F., Hammersen, B. & Eick, D. Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt's lymphoma cell lines. Oncogene9, 759–763 (1994) CASPubMed Google Scholar
Clark, H. M. et al. Mutations in the coding region of c-MYC in AIDS-associated and other aggressive lymphomas. Cancer Res.54, 3383–3386 (1994) CASPubMed Google Scholar
Henriksson, M., Bakardjiev, A., Klein, G. & Luscher, B. Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene8, 3199–3209 (1993) CASPubMed Google Scholar
Hoang, A. T. et al. A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol. Cell. Biol.15, 4031–4042 (1995) ArticleCAS Google Scholar
Westaway, D., Payne, G. & Varmus, H. E. Proviral deletions and oncogene base-substitutions in insertionally mutagenized c-myc alleles may contribute to the progression of avian bursal tumors. Proc. Natl Acad. Sci. USA81, 843–847 (1984) ArticleADSCAS Google Scholar
Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J.18, 717–726 (1999) ArticleCAS Google Scholar
Chang, D. W., Claassen, G. F., Hann, S. R. & Cole, M. D. The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol. Cell. Biol.20, 4309–4319 (2000) ArticleCAS Google Scholar
Sears, R. C. The life cycle of c-Myc: from synthesis to degradation. Cell Cycle3, 1133–1137 (2004) ArticleCAS Google Scholar
Frykberg, L., Graf, T. & Vennstrom, B. The transforming activity of the chicken c-myc gene can be potentiated by mutations. Oncogene1, 415–422 (1987) CASPubMed Google Scholar
Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biol.6, 308–318 (2004) ArticleCAS Google Scholar
Rabbitts, T. H., Hamlyn, P. H. & Baer, R. Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature306, 760–765 (1983) ArticleADSCAS Google Scholar
Bemark, M. & Neuberger, M. S. The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt's lymphoma line. Oncogene19, 3404–3410 (2000) ArticleCAS Google Scholar
Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature318, 533–538 (1985) ArticleADSCAS Google Scholar
Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell69, 119–128 (1992) ArticleCAS Google Scholar
Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev.13, 77–83 (2003) ArticleCAS Google Scholar
Maclean, K. H., Keller, U. B., Rodriguez-Galindo, C., Nilsson, J. A. & Cleveland, J. L. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol. Cell. Biol.23, 7256–7270 (2003) ArticleCAS Google Scholar
Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature419, 729–734 (2002) ArticleADSCAS Google Scholar
Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA101, 6164–6169 (2004) ArticleADSCAS Google Scholar
O'Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J.17, 384–395 (1998) ArticleCAS Google Scholar
Schmitt, C. A. et al. Dissecting p53 tumour suppressor functions in vivo. Cancer Cell1, 289–298 (2002) ArticleCAS Google Scholar
Gaidano, G. et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA88, 5413–5417 (1991) ArticleADSCAS Google Scholar
Bhatia, K. G., Gutierrez, M. I., Huppi, K., Siwarski, D. & Magrath, I. T. The pattern of p53 mutations in Burkitt's lymphoma differs from that of solid tumors. Cancer Res.52, 4273–4276 (1992) CASPubMed Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997) ArticleCAS Google Scholar
Yu, D. & Thomas-Tikhonenko, A. A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Oncogene21, 1922–1927 (2002) ArticleCAS Google Scholar