Natural-like function in artificial WW domains (original) (raw)
References
Voigt, C. A., Kauffman, S. & Wang, Z. G. Rational evolutionary design: the theory of in vitro protein evolution. Adv. Protein Chem.55, 79–160 (2000) ArticleCAS Google Scholar
Socolich, M. et al. Evolutionary information for specifying a protein fold. Nature doi:10.1038/nature03991 (this issue)
Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science286, 295–299 (1999) ArticleCAS Google Scholar
Suel, G. M., Lockless, S. W., Wall, M. A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nature Struct. Biol.10, 59–69 (2003) Article Google Scholar
Bedford, M. T., Sarbassova, D., Xu, J., Leder, P. & Yaffe, M. B. A novel pro-Arg motif recognized by WW domains. J. Biol. Chem.275, 10359–10369 (2000) ArticleCAS Google Scholar
Chen, H. I. & Sudol, M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl Acad. Sci. USA92, 7819–7823 (1995) ArticleADSCAS Google Scholar
Ermekova, K. S. et al. The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J. Biol. Chem.272, 32869–32877 (1997) ArticleCAS Google Scholar
Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science283, 1325–1328 (1999) ArticleADSCAS Google Scholar
Zarrinpar, A. & Lim, W. A. Converging on proline: the mechanism of WW domain peptide recognition. Nature Struct. Biol.7, 611–613 (2000) ArticleCAS Google Scholar
Kanelis, V., Rotin, D. & Forman-Kay, J. D. Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nature Struct. Biol.8, 407–412 (2001) ArticleCAS Google Scholar
Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nature Struct. Biol.7, 639–643 (2000) ArticleCAS Google Scholar
Kato, Y. et al. Common mechanism of ligand recognition by group II/III WW domains: redefining their functional classification. J. Biol. Chem.279, 31833–31841 (2004) ArticleCAS Google Scholar
Hu, H. et al. A map of WW domain family interactions. Proteomics4, 643–655 (2004) ArticleCAS Google Scholar
Otte, L. et al. WW domain sequence activity relationships identified using ligand recognition propensities of 42 WW domains. Protein Sci.12, 491–500 (2003) ArticleCAS Google Scholar
Chen, H. I. et al. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands. J. Biol. Chem.272, 17070–17077 (1997) ArticleCAS Google Scholar
Espanel, X. & Sudol, M. A single point mutation in a group I WW domain shifts its specificity to that of group II WW domains. J. Biol. Chem.274, 17284–17289 (1999) ArticleCAS Google Scholar
Kasanov, J., Pirozzi, G., Uveges, A. J. & Kay, B. K. Characterizing Class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. Chem. Biol.8, 231–241 (2001) ArticleCAS Google Scholar
Toepert, F., Pires, J. R., Landgraf, C., Oschkinat, H. & Schneider-Mergener, J. Synthesis of an array comprising 837 variants of the hYAP WW protein domain. Angew. Chem. Int. Edn Engl.40, 897–900 (2001) ArticleCAS Google Scholar
Huang, X. et al. Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan. Nature Struct. Biol.7, 634–638 (2000) ArticleCAS Google Scholar
Carter, P. J., Winter, G., Wilkinson, A. J. & Fersht, A. R. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell38, 835–840 (1984) ArticleCAS Google Scholar
Hidalgo, P. & MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science268, 307–310 (1995) ArticleADSCAS Google Scholar
Dahiyat, B. I. & Mayo, S. L. De novo protein design: fully automated sequence selection. Science278, 82–87 (1997) ArticleCAS Google Scholar
Dwyer, M. A., Looger, L. L. & Hellinga, H. W. Computational design of a biologically active enzyme. Science304, 1967–1971 (2004) ArticleADSCAS Google Scholar
Kortemme, T. et al. Computational redesign of protein-protein interaction specificity. Nature Struct. Mol. Biol.11, 371–379 (2004) ArticleCAS Google Scholar
Kraemer-Pecore, C. M., Lecomte, J. T. & Desjarlais, J. R. A de novo redesign of the WW domain. Protein Sci.12, 2194–2205 (2003) ArticleCAS Google Scholar
Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T. & Kim, P. S. High-resolution protein design with backbone freedom. Science282, 1462–1467 (1998) ArticleCAS Google Scholar
Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science302, 1364–1368 (2003) ArticleADSCAS Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994) ArticleCAS Google Scholar
Ferguson, N., Johnson, C. M., Macias, M., Oschkinat, H. & Fersht, A. Ultrafast folding of WW domains without structured aromatic clusters in the denatured state. Proc. Natl Acad. Sci. USA98, 13002–13007 (2001) ArticleADSCAS Google Scholar