Structure of the E. coli protein-conducting channel bound to a translating ribosome (original) (raw)
Simon, S. M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell65, 371–380 (1991) ArticleCAS Google Scholar
Wickner, W., Driessen, A. J. M. & Hartl, F. U. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu. Rev. Biochem.60, 101–124 (1991) ArticleCAS Google Scholar
Brundage, L. et al. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell62, 649–657 (1990) ArticleCAS Google Scholar
Gorlich, D. & Rapoport, T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell75, 615–630 (1993) ArticleCAS Google Scholar
Gilmore, R. & Blobel, G. Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell42, 497–505 (1985) ArticleCAS Google Scholar
Simon, S. M., Blobel, G. & Zimmerberg, J. Large aqueous channels in membrane vesicles derived from the rough endoplasmic reticulum of canine pancreas or the plasma membrane of Escherichia coli. Proc. Natl Acad. Sci. USA86, 6176–6180 (1989) ArticleADSCAS Google Scholar
Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell89, 523–533 (1997) ArticleCAS Google Scholar
Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature433, 377–381 (2005) ArticleADSCAS Google Scholar
Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome–Sec61 complex. Science278, 2123–2126 (1997) ArticleADSCAS Google Scholar
Menetret, J.-F. et al. The structure of ribosome–channel complexes engaged in protein translocation. Mol. Cell6, 1219–1232 (2000) ArticleCAS Google Scholar
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell107, 361–372 (2001) ArticleCAS Google Scholar
Morgan, D. G. et al. Structure of the mammalian ribosome-channel complex at 17 Å resolution. J. Mol. Biol.324, 871–886 (2002) ArticleCAS Google Scholar
van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature427, 36–44 (2004) ArticleCAS Google Scholar
Rapoport, T. A., Goder, V., Heinrich, S. U. & Matlack, K. E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol.14, 568–575 (2004) ArticleCAS Google Scholar
Prinz, A. et al. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal tRNA. EMBO J.19, 1900–1906 (2000) ArticleCAS Google Scholar
Raden, D., Song, W. & Gilmore, R. Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J. Cell Biol.150, 53–64 (2000) ArticleCAS Google Scholar
Cheng, Z., Jiang, Y., Mandon, E. C. & Gilmore, R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J. Cell Biol.168, 67–77 (2005) ArticleCAS Google Scholar
Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell108, 629–636 (2002) ArticleCAS Google Scholar
Bessonneau, P., Besson, V., Collinson, I. & Duong, F. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J.21, 995–1003 (2002) ArticleCAS Google Scholar
van der Sluis, E. O., Nouwen, N. & Driessen, A. J. M. SecY–SecY and SecY–SecG contacts revealed by site-specific crosslinking. FEBS Lett.527, 159–165 (2002) ArticleCAS Google Scholar
Tama, F., Miyashita, O. & Brooks, C. L. III NMFF: Flexible high-resolution annotation of low-resolution experimental data from cryo-EM maps using normal mode analysis. J. Struct. Biol.147, 315–326 (2004) ArticleCAS Google Scholar
Go, N., Noguti, T. & Nishikawa, T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl Acad. Sci. USA80, 3696–3700 (1983) ArticleADSCAS Google Scholar
Kaufmann, A. et al. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighbouring SecE. Biochemistry38, 9115–9125 (1999) ArticleCAS Google Scholar
Veenendaal, A., van der Does, C. & Driessen, A. Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J. Biol. Chem.276, 32559–32566 (2001) ArticleCAS Google Scholar
Tani, K., Tokuda, H. & Mizushima, S. Translocation of ProOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization. J. Biol. Chem.265, 17341–17347 (1990) CASPubMed Google Scholar
Wirth, A. et al. The Sec61p complex is a dynamic precursor activated channel. Mol. Cell12, 261–268 (2003) ArticleCAS Google Scholar
Martoglio, B., Hofmann, M. W., Brunner, J. & Dobberstein, B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell81, 207–214 (1995) ArticleCAS Google Scholar
Levy, R., Wiedmann, M. & Kreibich, G. In vitro binding of ribosomes to the β subunit of the Sec61p protein translocation complex. J. Biol. Chem.276, 2340–2346 (2001) ArticleCAS Google Scholar
Nishiyama, K.-i., Mizushima, S. & Tokuda, H. A novel membrane protein involved in protein translocation across the cytoplasmic membrane of Escherichia coli. EMBO J.12, 3409–3415 (1993) ArticleCAS Google Scholar
Schatz, P. J. et al. One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J.10, 1749–1757 (1991) ArticleCAS Google Scholar
Kalies, K. U., Rapoport, T. A. & Hartmann, E. The β subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J. Cell Biol.141, 887–894 (1998) ArticleCAS Google Scholar
Plath, K. et al. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell94, 795–807 (1998) ArticleCAS Google Scholar
Laird, V. & High, S. Discrete cross-linking products identified during membrane protein biosynthesis. J. Biol. Chem.272, 1983–1989 (1997) ArticleCAS Google Scholar
Scotti, P. A. et al. YidC, the E. coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J.19, 542–549 (2000) ArticleCAS Google Scholar
High, S. et al. Site-specific photocross-linking reveals that Sec61p and TRAM contact different regions of a membrane-inserted signal sequence. J. Biol. Chem.268, 26745–26751 (1993) CASPubMed Google Scholar
Valent, Q. A. et al. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J.17, 2504–2512 (1998) ArticleCAS Google Scholar
Neumann-Haefelin, C., Schafer, U., Muller, M. & Koch, H. G. SRP-dependent cotranslational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J.19, 6419–6426 (2000) ArticleCAS Google Scholar
Zito, C. R. & Oliver, D. Two-stage binding of SecA to the bacterial translocon regulates ribosome–translocon interaction. J. Biol. Chem.278, 40640–40646 (2003) ArticleCAS Google Scholar
Wagenknecht, T., Grassucci, R. & Frank, J. Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J. Mol. Biol.199, 137–147 (1988) ArticleCAS Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996) ArticleCAS Google Scholar
Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J.21, 3557–3567 (2002) ArticleCAS Google Scholar
Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell100, 537–549 (2000) ArticleCAS Google Scholar
Chapman, M. S. Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron density function. Acta Crystallogr. A51, 69–80 (1995) Article Google Scholar
Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Crystallogr. A43, 489–501 (1987) Article Google Scholar
Gao, H. et al. Study of the structural dynamics of the E. coli 70S ribosome using real-space refinement. Cell113, 789–801 (2003) ArticleCAS Google Scholar
Harms, J. M. et al. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol.2, 4 (2004) Article Google Scholar
Tirion, M. M. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett.77, 1905–1908 (1996) ArticleADSCAS Google Scholar
Breyton, C. et al. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature418, 662–665 (2002) ArticleADSCAS Google Scholar
Brunger, A. T. et al. Crystallography NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticleCAS Google Scholar