NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury (original) (raw)
References
Back, S. A. et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J. Neurosci.22, 455–463 (2002) ArticleCAS Google Scholar
Grossman, S. D., Rosenberg, L. J. & Wrathall, J. R. Temporal–spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp. Neurol.168, 273–282 (2001) ArticleCAS Google Scholar
Dewar, D., Underhill, S. M. & Goldberg, M. P. Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow Metab.23, 263–274 (2003) Article Google Scholar
Pitt, D., Werner, P. & Raine, C. S. Glutamate excitotoxicity in a model of multiple sclerosis. Nature Med.6, 67–70 (2000) ArticleCAS Google Scholar
Brun, A. & Englund, E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann. Neurol.19, 253–262 (1986) ArticleCAS Google Scholar
Wilke, S., Salter, M., Thomas, R., Allcock, N. & Fern, R. Mechanism of acute ischemic injury of oligodendroglia in early myelinating white matter: the importance of astrocyte injury and glutamate release. J. Neuropathol. Exp. Neurol.63, 872–881 (2004) ArticleCAS Google Scholar
Ludwin, S. K. Pathology of demyelination and remyelination. Adv. Neurol.31, 123–168 (1981) CASPubMed Google Scholar
Rodriguez, M., Scheithauer, B. W., Forbes, G. & Kelly, P. J. Oligodendrocyte injury is an early event in lesions of multiple sclerosis. Mayo Clin. Proc.68, 627–636 (1993) ArticleCAS Google Scholar
Wolswijk, G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain123, 105–115 (2000) Article Google Scholar
Back, S. A., Gan, X., Li, Y., Rosenberg, P. A. & Volpe, J. J. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J. Neurosci.18, 6241–6253 (1998) ArticleCAS Google Scholar
Fern, R. & Moller, T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J. Neurosci.20, 34–42 (2000) ArticleCAS Google Scholar
Follett, P. L., Rosenberg, P. A., Volpe, J. J. & Jensen, F. E. NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci.20, 9235–9241 (2000) ArticleCAS Google Scholar
Gallo, V. & Ghiani, C. A. Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol. Sci.21, 252–258 (2000) ArticleCAS Google Scholar
Itoh, T. et al. AMPA glutamate receptor-mediated calcium signalling is transiently enhanced during development of oligodendrocytes. J. Neurochem.81, 390–402 (2002) ArticleCAS Google Scholar
Small, R. K., Riddle, P. & Noble, M. Evidence for migration of oligodendrocyte–type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature328, 155–157 (1987) ArticleADSCAS Google Scholar
Craig, A. et al. Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp. Neurol.181, 231–240 (2003) Article Google Scholar
Butt, A. M. & Ransom, B. R. Morphology of astrocytes and oligodendrocytes during development in the intact rat optic nerve. J. Comp. Neurol.338, 141–158 (1993) ArticleCAS Google Scholar
Zhuo, L. et al. Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol.187, 36–42 (1997) ArticleCAS Google Scholar
McDonald, J. W., Althomsons, S. P., Hyrc, K. L., Choi, D. W. & Goldberg, M. P. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nature Med.4, 291–297 (1998) ArticleCAS Google Scholar
Matute, C., Sanchez-Gomez, M. V., Martinez-Millan, L. & Miledi, R. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc. Natl Acad. Sci. USA94, 8830–8835 (1997) ArticleADSCAS Google Scholar
Salter, M. G., Franklin, K. A. & Whitelam, G. C. Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature426, 680–683 (2003) ArticleADSCAS Google Scholar
Alvarez, J., Giuditta, A. & Koenig, E. Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog. Neurobiol.62, 1–62 (2000) ArticleCAS Google Scholar
Barres, B. A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell70, 31–46 (1992) ArticleCAS Google Scholar
Káradóttir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature doi:10.1038/nature04302 (this issue)
Matsuda, K., Kamiya, Y., Matsuda, S. & Yuzaki, M. Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Brain Res. Mol. Brain Res.100, 43–52 (2002) ArticleCAS Google Scholar
Sasaki, Y. F. et al. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J. Neurophysiol.87, 2052–2063 (2002) ArticleCAS Google Scholar
Wang, C. et al. Functional _N_-methyl-D-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid–neural cell adhesion molecule expression and cell migration. J. Cell Biol.135, 1565–1581 (1996) ArticleCAS Google Scholar
Ziak, D., Chvatal, A. & Sykova, E. Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol. Res.47, 365–375 (1998) CASPubMed Google Scholar
Yuan, X. et al. Expression of the green fluorescent protein in the oligodendrocyte lineage: a transgenic mouse for developmental and physiological studies. J. Neurosci. Res.70, 529–545 (2002) ArticleCAS Google Scholar