NMDA receptors are expressed in oligodendrocytes and activated in ischaemia (original) (raw)
References
Volpe, J. J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res.50, 553–562 (2001) ArticleCAS Google Scholar
Stys, P. K. White matter injury mechanisms. Curr. Mol. Med.4, 113–130 (2004) ArticleCAS Google Scholar
Matute, C. et al. The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci.24, 224–230 (2001) ArticleCAS Google Scholar
Dewar, D., Underhill, S. M. & Goldberg, M. P. Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow Metab.23, 263–274 (2003) Article Google Scholar
Choi, D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron1, 623–634 (1988) ArticleCAS Google Scholar
Patneau, D. K., Wright, P. W., Winters, C., Mayer, M. L. & Gallo, V. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor. Neuron12, 357–371 (1994) ArticleCAS Google Scholar
Berger, T., Walz, W., Schnitzer, J. & Kettenmann, H. GABA- and glutamate-activated currents in glial cells of the mouse corpus callosum slice. J. Neurosci. Res.31, 21–27 (1992) ArticleCAS Google Scholar
Oka, A., Belliveau, M. J., Rosenberg, P. A. & Volpe, J. J. Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci.13, 1441–1453 (1993) ArticleCAS Google Scholar
Follett, P. L., Rosenberg, P. A., Volpe, J. J. & Jensen, F. E. NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci.20, 9235–9241 (2000) ArticleCAS Google Scholar
Tekkök, S. B. & Goldberg, M. P. AMPA/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J. Neurosci.21, 4237–4248 (2001) Article Google Scholar
Agrawal, S. K. & Fehlings, M. G. Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J. Neurosci.17, 1055–1063 (1997) ArticleCAS Google Scholar
Wrathall, J. R., Teng, Y. D. & Marriott, R. Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma. Exp. Neurol.145, 565–573 (1997) ArticleCAS Google Scholar
Pitt, D., Werner, P. & Raine, C. S. Glutamate excitotoxicity in a model of multiple sclerosis. Nature Med.6, 67–70 (2000) ArticleCAS Google Scholar
Smith, T., Groom, A., Zhu, B. & Turski, L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nature Med.6, 62–66 (2000) ArticleCAS Google Scholar
Wang, C. et al. Functional _N_-methyl-d-aspartate receptors in O–2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration. J. Cell Biol.135, 1565–1581 (1996) ArticleCAS Google Scholar
Ziak, D., Chvatal, A. & Sykova, E. Glutamate, kainate and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol. Res.47, 365–375 (1998) CASPubMed Google Scholar
Schäbitz, W.-R., Li, F. & Fisher, M. The _N_-methyl-d-aspartate antagonist CNS 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. Stroke31, 1709–1714 (2000) Article Google Scholar
Wallström, E. et al. Memantine abrogates neurological deficits, but not CNS inflammation, in Lewis rat experimental autoimmune encephalomyelitis. J. Neurol. Sci.137, 89–96 (1996) Article Google Scholar
Back, S. A. et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J. Neurosci.21, 1302–1312 (2001) ArticleCAS Google Scholar
Bergles, D. E., Roberts, J. D. B., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature405, 187–191 (2000) ArticleADSCAS Google Scholar
Kirson, E. D., Schirra, C., Konnerth, A. & Yaari, Y. Early postnatal switch in magnesium sensitivity of NMDA receptors in rat CA1 pyramidal cells. J. Physiol. (Lond.)521, 99–111 (1999) ArticleCAS Google Scholar
Kuner, T. & Schoepfer, R. Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J. Neurosci.16, 3549–3558 (1996) ArticleCAS Google Scholar
Sasaki, Y. F. et al. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J. Neurophysiol.87, 2052–2063 (2002) ArticleCAS Google Scholar
Borges, K. & Kettenmann, H. Blockade of K+ channels induced by AMPA/kainate receptor activation in mouse oligodendrocyte precursor cells is mediated by Na+ entry. J. Neurosci. Res.42, 579–593 (1995) ArticleCAS Google Scholar
Allen, N. J., Káradóttir, R. & Attwell, D. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J. Neurosci.25, 848–859 (2005) ArticleCAS Google Scholar
Yuan, X., Eisen, A. M., McBain, C. J. & Gallo, V. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development125, 2901–2914 (1998) CASPubMed Google Scholar
Salter, M. G. & Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature doi:10.1038/nature04301 (this issue)
Berry, M., Hubbard, P. & Butt, A. M. Cytology and lineage of NG2-positive glia. J. Neurocytol.31, 457–467 (2002) ArticleCAS Google Scholar
Chittajulu, R., Aguirre, A. & Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol. (Lond.)561, 109–122 (2004) Article Google Scholar