Purification and unique properties of mammary epithelial stem cells (original) (raw)
References
Al Hajj, M. & Clarke, M. F. Self-renewal and solid tumour stem cells. Oncogene23, 7274–7282 (2004) ArticleCASPubMed Google Scholar
Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development125, 1921–1930 (1998) CASPubMed Google Scholar
Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17, 1253–1270 (2003) ArticleCASPubMedPubMed Central Google Scholar
Stingl, J., Raouf, A., Emerman, J. T. & Eaves, C. J. Epithelial progenitors in the normal human mammary gland. J. Mamm. Gland Biol. Neoplasia10, 49–59 (2005) Article Google Scholar
Sakakura, T. in The Mammary Gland: Development, Regulation, and Function (eds Neville, M. C. & Daniel, C. W.) 37–66 (Plenum, New York, 1987) Book Google Scholar
Smalley, M. J., Titley, J. & O'Hare, M. J. Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cell. Dev. Biol. Anim.34, 711–721 (1998) ArticleCASPubMed Google Scholar
Stingl, J., Eaves, C. J., Zandieh, I. & Emerman, J. T. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat.67, 93–109 (2001) ArticleCASPubMed Google Scholar
Smith, G. H. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res. Treat.39, 21–31 (1996) ArticleCASPubMed Google Scholar
Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science297, 2256–2259 (2002) ArticleADSCASPubMed Google Scholar
Hadjantonakis, A. K., Macmaster, S. & Nagy, A. Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol.2, 11 (2002) ArticlePubMedPubMed Central Google Scholar
Wlem, B. E. et al. Sca-1pos cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol.245, 42–56 (2002) Article Google Scholar
Tani, H., Morris, R. J. & Kaur, P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA97, 10960–10965 (2000) ArticleADSCASPubMedPubMed Central Google Scholar
Li, A., Simmons, P. J. & Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA95, 3902–3907 (1998) ArticleADSCASPubMedPubMed Central Google Scholar
Jones, C. et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res.64, 3037–3045 (2004) ArticleCASPubMed Google Scholar
Carter, W. G., Kaur, P., Gil, S. G., Gahr, P. J. & Wayner, E. A. Distinct functions for integrins alpha 3 beta 1 in focal adhesions and alpha 6 beta 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes. J. Cell Biol.111, 3141–3154 (1990) ArticleCASPubMed Google Scholar
Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature439, 84–88 (2006) ArticleADSCASPubMed Google Scholar
Li, Y. et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA100, 15853–15858 (2003) ArticleADSCASPubMedPubMed Central Google Scholar
Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.183, 1797–1806 (1996) ArticleCASPubMed Google Scholar
Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med.7, 1028–1034 (2001) ArticleCASPubMed Google Scholar
Spangrude, G. J. & Johnson, G. R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc. Natl Acad. Sci. USA87, 7433–7437 (1990) ArticleADSCASPubMedPubMed Central Google Scholar
Uchida, N. et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood103, 4487–4495 (2004) ArticleCASPubMed Google Scholar
Bhattacharya, S. et al. Direct identification and enrichment of retinal stem cells/progenitors by Hoechst dye efflux assay. Invest. Ophthalmol. Vis. Sci.44, 2764–2773 (2003) ArticlePubMed Google Scholar
Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A. & Megeney, L. A. The post-natal heart contains a myocardial stem cell population. FEBS Lett.530, 239–243 (2002) ArticleCASPubMed Google Scholar
Alvi, A. J. et al. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res.5, R1–R8 (2003) ArticlePubMed Google Scholar
Smith, G. H. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development132, 681–687 (2005) ArticleCASPubMed Google Scholar
Glimm, H., Oh, I. & Eaves, C. Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter G0 . Blood96, 4185–4193 (2000) CASPubMed Google Scholar
Stingl, J., Emerman, J. T. & Eaves, C. J. in Methods in Molecular Biology: Basic Cell Culture Protocols (eds Helgason, C. D. & Miller, C. L.) 249–263 (Humana, New Jersey, 2005) Google Scholar
Young, L. J. T. in Methods in Mammary Gland Biology and Breast Cancer Research (eds Ip, M. M. & Asch, B. B.) 67–74 (Kluwer/Plenum, New York, 2000) Book Google Scholar
Szilvassy, S. J., Nicolini, F. E., Eaves, C. J. & Miller, C. L. in Methods in Molecular Medicine: Hematopoietic Stem Cell Protocols (eds Jordon, C. T. & Klug, C. A.) 167–187 (Humana, New Jersey, 2002) Google Scholar