Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation (original) (raw)

References

  1. Maquat, L. E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nature Rev. Mol. Cell Biol. 5, 89–99 (2004)
    Article CAS Google Scholar
  2. van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002)
    Article ADS CAS PubMed Google Scholar
  3. Davis, L. & Engebrecht, J. Yeast dom34 mutants are defective in multiple developmental pathways and exhibit decreased levels of polyribosomes. Genetics 149, 45–56 (1998)
    CAS PubMed PubMed Central Google Scholar
  4. Inagaki, Y., Blouin, C., Susko, E. & Roger, A. J. Assessing functional divergence in EF-1alpha and its paralogs in eukaryotes and archaebacteria. Nucleic Acids Res. 31, 4227–4237 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  5. Hosoda, N. et al. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J. Biol. Chem. 278, 38287–38291 (2003)
    Article CAS PubMed Google Scholar
  6. Decker, C. J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993)
    Article CAS PubMed Google Scholar
  7. Coller, J. & Parker, R. Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861–890 (2004)
    Article CAS PubMed Google Scholar
  8. Dunckley, T. & Parker, R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18, 5411–5422 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  9. van Hoof, A., Staples, R. R., Baker, R. E. & Parker, R. Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol. Cell. Biol. 20, 8230–8243 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  10. Anderson, J. S. & Parker, R. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 1497–1506 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  11. Muhlrad, D., Decker, C. J. & Parker, R. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15, 2145–2156 (1995)
    Article CAS PubMed PubMed Central Google Scholar
  12. Muhlrad, D. & Parker, R. Premature translational termination triggers mRNA decapping. Nature 370, 578–581 (1994)
    Article ADS CAS PubMed Google Scholar
  13. Inge-Vechtomov, S., Zhouravleva, G. & Philippe, M. Eukaryotic release factors (eRFs) history. Biol. Cell. 95, 195–209 (2003)
    Article CAS PubMed Google Scholar
  14. Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E. A. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992)
    Article CAS PubMed Google Scholar
  15. Carr-Schmid, A., Pfund, C., Craig, E. A. & Kinzy, T. G. Novel G-protein complex whose requirement is linked to the translational status of the cell. Mol. Cell. Biol. 22, 2564–2574 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  16. Kong, C. et al. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol. Cell 14, 233–245 (2004)
    Article CAS PubMed Google Scholar
  17. van Hoof, A. Conserved functions of yeast genes support the Duplication, Degeneration and Complementation model for gene duplication. Genetics 171, 1455–1461 (2005)
    Article CAS PubMed PubMed Central Google Scholar
  18. Chiba, Y. et al. Evidence for autoregulation of cystathionine gamma-synthase mRNA stability in Arabidopsis. Science 286, 1371–1374 (1999)
    Article CAS PubMed Google Scholar
  19. Gatfield, D. & Izaurralde, E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429, 575–578 (2004)
    Article ADS CAS PubMed Google Scholar
  20. Onouchi, H. et al. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev. 19, 1799–1810 (2005)
    Article CAS PubMed PubMed Central Google Scholar
  21. Sunohara, T., Jojima, K., Tagami, H., Inada, T. & Aiba, H. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J. Biol. Chem. 279, 15368–15375 (2004)
    Article CAS PubMed Google Scholar
  22. Sunohara, T., Jojima, K., Yamamoto, Y., Inada, T. & Aiba, H. Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA 10, 378–386 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  23. Hayes, C. S. & Sauer, R. T. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell 12, 903–911 (2003)
    Article CAS PubMed Google Scholar
  24. Withey, J. H. & Friedman, D. I. A salvage pathway for protein structures: tmRNA and trans-translation. Annu. Rev. Microbiol. 57, 101–123 (2003)
    Article CAS PubMed Google Scholar
  25. Harger, J. W. & Dinman, J. D. An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 9, 1019–1024 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  26. Kozak, M. Constraints on reinitiation of translation in mammals. Nucleic Acids Res. 29, 5226–5232 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  27. Sorensen, M. A., Kurland, C. G. & Pedersen, S. Codon usage determines translation rate in Escherichia coli. J. Mol. Biol. 207, 365–377 (1989)
    Article CAS Google Scholar
  28. Hayes, C. S., Bose, B. & Sauer, R. T. Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. J. Biol. Chem. 277, 33825–33832 (2002)
    Article CAS PubMed Google Scholar

Download references