PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR (original) (raw)
Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996) ArticleCAS Google Scholar
Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev.25, 581–611 (2004) ArticleCAS Google Scholar
Semenza, G. L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med.8, S62–S67 (2002) ArticleCAS Google Scholar
de The, H. et al. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell66, 675–684 (1991) ArticleCAS Google Scholar
Goddard, A. D., Borrow, J., Freemont, P. S. & Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science254, 1371–1374 (1991) ArticleADSCAS Google Scholar
Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell66, 663–674 (1991) ArticleCAS Google Scholar
Pandolfi, P. P. et al. Structure and origin of the acute promyelocytic leukemia myl/RARα cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene6, 1285–1292 (1991) CASPubMed Google Scholar
Rego, E. M. et al. Role of promyelocytic leukemia (PML) protein in tumor suppression. J. Exp. Med.193, 521–529 (2001) ArticleCAS Google Scholar
Salomoni, P. & Pandolfi, P. P. The role of PML in tumor suppression. Cell108, 165–170 (2002) ArticleCAS Google Scholar
Wang, Z. G. et al. PML is essential for multiple apoptotic pathways. Nature Genet.20, 266–272 (1998) ArticleCAS Google Scholar
Wang, Z. G. et al. Role of PML in cell growth and the retinoic acid pathway. Science279, 1547–1551 (1998) ArticleADSCAS Google Scholar
Trotman, L. C. et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature441, 523–527 (2006) ArticleADSCAS Google Scholar
Koken, M. H. et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene10, 1315–1324 (1995) CASPubMed Google Scholar
Gambacorta, M. et al. Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues. Am. J. Pathol.149, 2023–2035 (1996) CASPubMedPubMed Central Google Scholar
Zhang, P. et al. Lack of expression for the suppressor PML in human small cell lung carcinoma. Int. J. Cancer85, 599–605 (2000) ArticleCAS Google Scholar
Gurrieri, C. et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J. Natl Cancer Inst.96, 269–279 (2004) ArticleCAS Google Scholar
Lin, H. K., Bergmann, S. & Pandolfi, P. P. Cytoplasmic PML function in TGF-β signalling. Nature431, 205–211 (2004) ArticleADSCAS Google Scholar
Takahashi, Y., Lallemand-Breitenbach, V., Zhu, J. & de The, H. PML nuclear bodies and apoptosis. Oncogene23, 2819–2824 (2004) ArticleCAS Google Scholar
Marti, H. H. & Risau, W. Angiogenesis in ischemic disease. Thromb. Haemost.82 (suppl. 1), 44–52 (1999) PubMed Google Scholar
Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Med.9, 702–712 (2003) ArticleCAS Google Scholar
Rabbany, S. Y., Heissig, B., Hattori, K. & Rafii, S. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol. Med.9, 109–117 (2003) ArticleCAS Google Scholar
Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med.7, 1194–1201 (2001) ArticleCAS Google Scholar
Amano, K. et al. Mechanism for IL-1β-mediated neovascularization unmasked by IL-1β knock-out mice. J. Mol. Cell. Cardiol.36, 469–480 (2004) ArticleCAS Google Scholar
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer3, 721–732 (2003) ArticleCAS Google Scholar
Kaelin, W. G. Jr. How oxygen makes its presence felt. Genes Dev.16, 1441–1445 (2002) ArticleCAS Google Scholar
Brahimi-Horn, C. & Pouyssegur, J. When hypoxia signalling meets the ubiquitin-proteasomal pathway, new targets for cancer therapy. Crit. Rev. Oncol. Hematol.53, 115–123 (2005) Article Google Scholar
Arsham, A. M., Howell, J. J. & Simon, M. C. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem.278, 29655–29660 (2003) ArticleCAS Google Scholar
Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev.18, 2893–2904 (2004) ArticleCAS Google Scholar
Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell21, 521–531 (2006) Article Google Scholar
Dufner, A. & Thomas, G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res.253, 100–109 (1999) ArticleCAS Google Scholar
Harrington, L. S., Findlay, G. M. & Lamb, R. F. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem. Sci.30, 35–42 (2005) ArticleCAS Google Scholar
Martin, D. E. & Hall, M. N. The expanding TOR signaling network. Curr. Opin. Cell Biol.17, 158–166 (2005) ArticleCAS Google Scholar
Long, X., Ortiz-Vega, S. & Avruch, J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem.280, 23433–23436 (2005) ArticleCAS Google Scholar
Kim, J. E. & Chen, J. Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc. Natl Acad. Sci. USA97, 14340–14345 (2000) ArticleADSCAS Google Scholar
Park, I. H., Bachmann, R., Shirazi, H. & Chen, J. Regulation of ribosomal S6 kinase 2 by mammalian target of rapamycin. J. Biol. Chem.277, 31423–31429 (2002) ArticleCAS Google Scholar
Paglin, S. et al. Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res.65, 11061–11070 (2005) ArticleCAS Google Scholar
Jensen, K., Shiels, C. & Freemont, P. S. PML protein isoforms and the RBCC/TRIM motif. Oncogene20, 7223–7233 (2001) ArticleCAS Google Scholar
Corada, M. et al. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood100, 905–911 (2002) ArticleCAS Google Scholar
Liao, F. et al. Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res.62, 2567–2575 (2002) CASPubMed Google Scholar
Zhu, J., Lallemand-Breitenbach, V. & de The, H. Pathways of retinoic acid- or arsenic trioxide-induced PML/RARα catabolism, role of oncogene degradation in disease remission. Oncogene20, 7257–7265 (2001) ArticleCAS Google Scholar
Lavau, C. et al. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene11, 871–876 (1995) CASPubMed Google Scholar
Chelbi-Alix, M. K. et al. Induction of the PML protein by interferons in normal and APL cells. Leukemia9, 2027–2033 (1995) CASPubMed Google Scholar
Sawyers, C. L. Will mTOR inhibitors make it as cancer drugs? Cancer Cell4, 343–348 (2003) ArticleCAS Google Scholar
Vignot, S., Faivre, S., Aguirre, D. & Raymond, E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol.16, 525–537 (2005) ArticleCAS Google Scholar
Bernardi, R. et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature Cell Biol.6, 665–672 (2004) ArticleCAS Google Scholar
Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14, 1296–1302 (2004) ArticleCAS Google Scholar
Grisendi, S. et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature437, 147–153 (2005) ArticleADSCAS Google Scholar