Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex (original) (raw)

References

  1. Mian, I. S. Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res. 25, 3187–3195 (1997)
    Article CAS PubMed PubMed Central Google Scholar
  2. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91, 457–466 (1997)
    Article CAS PubMed Google Scholar
  3. Cairrão, F., Arraiano, C. & Newbury, S. Drosophila gene tazman, an orthologue of the yeast exosome component Rrp44p/Dis3, is differentially expressed during development. Dev. Dyn. 232, 733–737 (2005)
    Article PubMed Google Scholar
  4. Bollenbach, T. J. et al. RNR1, a 3′-5′ exoribonuclease belonging to the RNR superfamily, catalyzes 3′ maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana. Nucleic Acids Res. 33, 2751–2763 (2005)
    Article CAS PubMed PubMed Central Google Scholar
  5. Amblar, M., Barbas, A., Fialho, A. M. & Arraiano, C. M. Characterization of the functional domains of Escherichia coli RNase II. J. Mol. Biol. 360, 921–933 (2006)
    Article CAS PubMed Google Scholar
  6. Cannistraro, V. J. & Kennell, D. The processive reaction mechanism of ribonuclease II. J. Mol. Biol. 243, 930–943 (1994)
    Article CAS PubMed Google Scholar
  7. Lim, J. et al. Isolation of murine and human homologues of the fission-yeast dis3 + gene encoding a mitotic-control protein and its overexpression in cancer cells with progressive phenotype. Cancer Res. 57, 921–925 (1997)
    CAS PubMed Google Scholar
  8. Orban, T. I. & Izaurralde, E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11, 459–469 (2005)
    Article CAS PubMed PubMed Central Google Scholar
  9. van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002)
    Article ADS CAS PubMed Google Scholar
  10. Lejeune, F., Li, X. & Maquat, L. E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003)
    Article CAS PubMed Google Scholar
  11. LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724 (2005)
    Article CAS PubMed Google Scholar
  12. Dreyfus, M. & Regnier, P. The poly(A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell 111, 611–613 (2002)
    Article CAS PubMed Google Scholar
  13. Cairrão, F., Cruz, A., Mori, H. & Arraiano, C. M. Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol. Microbiol. 50, 1349–1360 (2003)
    Article PubMed Google Scholar
  14. Cheng, Z. F., Zuo, Y., Li, Z., Rudd, K. E. & Deutscher, M. P. The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J. Biol. Chem. 273, 14077–14080 (1998)
    Article CAS PubMed Google Scholar
  15. Graumann, P. L. & Marahiel, M. A. A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci. 23, 286–290 (1998)
    Article CAS PubMed Google Scholar
  16. Theobald, D. L., Mitton-Fry, R. M. & Wuttke, D. S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 115–133 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  17. Bycroft, M., Hubbard, T. J., Proctor, M., Freund, S. M. & Murzin, A. G. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88, 235–242 (1997)
    Article CAS PubMed Google Scholar
  18. Amblar, M. & Arraiano, C. M. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding. FEBS J. 272, 363–374 (2005)
    Article CAS PubMed Google Scholar
  19. Nowotny, M., Gaidamakov, S. A., Crouch, R. J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 (2005)
    Article CAS PubMed Google Scholar
  20. Gan, J. et al. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 124, 355–366 (2006)
    Article CAS PubMed Google Scholar
  21. Symmons, M. F., Williams, M. G., Luisi, B. F., Jones, G. H. & Carpousis, A. J. Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem. Sci. 27, 11–18 (2002)
    Article CAS PubMed Google Scholar
  22. Cassano, A. G., Anderson, V. E. & Harris, M. E. Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects. Biopolymers 73, 110–129 (2004)
    Article CAS PubMed Google Scholar
  23. Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993)
    Article ADS CAS PubMed PubMed Central Google Scholar
  24. McVey, C. E. et al. Expression, purification, crystallization and preliminary diffraction data characterization of Escherichia coli ribonuclease II (RNase II). Acta Crystallogr. F 62, 684–687 (2006)
    Article CAS Google Scholar
  25. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003)
    Article CAS PubMed Google Scholar
  26. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004)
    Article CAS PubMed Google Scholar
  27. McRee, D. E. XtalView/Xfit—A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999)
    Article CAS PubMed Google Scholar
  28. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)
    Article CAS PubMed Google Scholar
  29. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)
    Article PubMed Google Scholar
  30. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997)
    Article CAS Google Scholar

Download references