Jakubowski, H. & Goldman, E. Editing of errors in selection of amino acids for protein synthesis. Microbiol. Rev.56, 412–429 (1992) CASPubMedPubMed Central Google Scholar
Bacher, J. M., de Crecy-Lagard, V. & Schimmel, P. R. Inhibited cell growth and protein functional changes from an editing-defective tRNA synthetase. Proc. Natl Acad. Sci. USA102, 1697–1701 (2005) ArticleADSCASPubMedPubMed Central Google Scholar
Doring, V. et al. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science292, 501–504 (2001) ArticleADSCASPubMed Google Scholar
Nangle, L. A., de Crecy-Lagard, V., Doring, V. & Schimmel, P. Genetic code ambiguity. Cell viability related to the severity of editing defects in mutant tRNA synthetases. J. Biol. Chem.277, 45729–45733 (2002) ArticleCASPubMed Google Scholar
Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med.10 (Suppl.), S10–S17 (2004) ArticlePubMed Google Scholar
Dock-Bregeon, A. et al. Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the double discrimination problem. Cell103, 877–884 (2000) ArticleCASPubMed Google Scholar
Beebe, K., Ribas De Pouplana, L. & Schimmel, P. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J.22, 668–675 (2003) ArticleCASPubMedPubMed Central Google Scholar
Hou, Y. M. & Schimmel, P. Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution. Biochemistry28, 6800–6804 (1989) ArticleCASPubMed Google Scholar
Ripmaster, T. L., Shiba, K. & Schimmel, P. Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl Acad. Sci. USA92, 4932–4936 (1995) ArticleADSCASPubMedPubMed Central Google Scholar
Hou, Y. M. & Schimmel, P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature333, 140–145 (1988) ArticleADSCASPubMed Google Scholar
Ross, C. A. & Pickart, C. M. The ubiquitin–proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol.14, 703–711 (2004) ArticleCASPubMed Google Scholar
Welch, W. J. Role of quality control pathways in human diseases involving protein misfolding. Semin. Cell Dev. Biol.15, 31–38 (2004) ArticleCASPubMed Google Scholar
Dobson, C. M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol.15, 3–16 (2004) ArticleCASPubMed Google Scholar
Barral, J. M., Broadley, S. A., Schaffar, G. & Hartl, F. U. Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol.15, 17–29 (2004) ArticleCASPubMed Google Scholar
Muchowski, P. J. & Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nature Rev. Neurosci.6, 11–22 (2005) ArticleCAS Google Scholar
Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest.115, 2656–2664 (2005) ArticleCASPubMedPubMed Central Google Scholar
Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev.12, 982–995 (1998) ArticleCASPubMedPubMed Central Google Scholar
Murphy, R. M. Peptide aggregation in neurodegenerative disease. Annu. Rev. Biomed. Eng.4, 155–174 (2002) ArticleCASPubMed Google Scholar
Sokabe, M., Okada, A., Yao, M., Nakashima, T. & Tanaka, I. Molecular basis of alanine discrimination in editing site. Proc. Natl Acad. Sci. USA102, 11669–11674 (2005) ArticleADSCASPubMedPubMed Central Google Scholar
Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nature Rev. Genet.6, 743–755 (2005) ArticleCASPubMed Google Scholar
Senderek, J. et al. Mutations in SIL1 cause Marinesco–Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nature Genet.37, 1312–1314 (2005) ArticleCASPubMed Google Scholar
Anttonen, A. K. et al. The gene disrupted in Marinesco–Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nature Genet.37, 1309–1311 (2005) ArticleCASPubMed Google Scholar
Zhao, L., Longo-Guess, C., Harris, B. S., Lee, J. W. & Ackerman, S. L. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nature Genet.37, 974–979 (2005) ArticleCASPubMed Google Scholar
Ackerman, S. L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature386, 838–842 (1997) ArticleADSCASPubMed Google Scholar
Hogan, B. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1986) Google Scholar
Xue, H., Shen, W. & Wong, J. T. Purification of hyperexpressed Bacillus subtilis tRNATrp cloned in Escherichia coli. J. Chromatogr.613, 247–255 (1993) ArticleCASPubMed Google Scholar
Beebe, K., Merriman, E., Ribas De Pouplana, L. & Schimmel, P. A domain for editing by an archaebacterial tRNA synthetase. Proc. Natl Acad. Sci. USA101, 5958–5963 (2004) ArticleADSCASPubMedPubMed Central Google Scholar
Pleiss, J. A. & Uhlenbeck, O. C. Identification of thermodynamically relevant interactions between EF-Tu and backbone elements of tRNA. J. Mol. Biol.308, 895–905 (2001) ArticleCASPubMed Google Scholar
Swairjo, M. A. et al. Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition. Mol. Cell13, 829–841 (2004) ArticleCASPubMed Google Scholar
Nangle, L. A., Motta, C. M. & Schimmel, P. Global effects of mistranslation from an editing defect in mammalian cells. Chem. Biol. (in the press)