Bidirectional control of CNS capillary diameter by pericytes (original) (raw)

References

  1. Roy, C. & Sherrington, C. On the regulation of the blood supply of the brain. J. Physiol. (Lond.) 11, 85–100 (1890)
    Article CAS Google Scholar
  2. Raichle, M. E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl Acad. Sci. USA 95, 765–772 (1998)
    Article ADS CAS Google Scholar
  3. Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 25, 621–625 (2002)
    Article CAS Google Scholar
  4. Cohen, Z., Molinatti, G. & Hamel, E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J. Cereb. Blood Flow Metab. 17, 894–904 (1997)
    Article CAS Google Scholar
  5. Berg, B. R., Cohen, K. D. & Sarelius, I. H. Direct coupling between blood flow and metabolism at the capillary level in striated muscle. Am. J. Physiol. 272, H2693–H2700 (1997)
    CAS PubMed Google Scholar
  6. Iadecola, C., Yang, G., Ebner, T. J. & Chen, G. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J. Neurophysiol. 78, 651–659 (1997)
    Article CAS Google Scholar
  7. Herman, I. M. & D'Amore, P. A. Microvascular pericytes contain muscle and nonmuscle actins. J. Cell Biol. 101, 43–52 (1985)
    Article CAS Google Scholar
  8. Rucker, H. K., Wynder, H. J. & Thomas, W. E. Cellular mechanisms of CNS pericytes. Brain Res. Bull. 51, 363–369 (2000)
    Article CAS Google Scholar
  9. Kawamura, H. et al. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J. Physiol. (Lond.) 551, 787–799 (2003)
    Article CAS Google Scholar
  10. Kawamura, H. et al. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina. J. Physiol. (Lond.) 561, 671–683 (2004)
    Article CAS Google Scholar
  11. Wu, D. M., Kawamura, H., Sakagami, K., Kobayashi, M. & Puro, D. G. Cholinergic regulation of pericyte-containing retinal microvessels. Am. J. Physiol. Heart Circ. Physiol. 284, H2083–H2090 (2003)
    Article CAS Google Scholar
  12. Hirase, H., Creso, J., Singleton, M., Bartho, P. & Buzsaki, G. Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes. Glia 46, 95–100 (2004)
    Article Google Scholar
  13. Hughes, S. & Chan-Ling, T. Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Invest. Ophthalmol. Vis. Sci. 45, 2795–2806 (2004)
    Article Google Scholar
  14. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci. 6, 43–50 (2003)
    Article CAS Google Scholar
  15. Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004)
    Article ADS CAS Google Scholar
  16. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nature Neurosci. 9, 260–267 (2006)
    Article CAS Google Scholar
  17. Newman, E. A. Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J. Neurosci. 21, 2215–2223 (2001)
    Article CAS Google Scholar
  18. Leffler, C. W., Beasley, D. G. & Busija, D. W. Cerebral ischemia alters cerebral microvascular reactivity in newborn pigs. Am. J. Physiol. 257, H266–H271 (1989)
    CAS PubMed Google Scholar
  19. Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A. & Moskowitz, M. A. Oxygen radicals in cerebral ischemia. Am. J. Physiol. 263, H1356–H1362 (1992)
    CAS PubMed Google Scholar
  20. Hauck, E. F., Apostel, S., Hoffmann, J. F., Heimann, A. & Kempski, O. Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy. J. Cereb. Blood Flow Metab. 24, 383–391 (2004)
    Article Google Scholar
  21. Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148 (1985)
    Article CAS Google Scholar
  22. Butryn, R. K., Ruan, H., Hull, C. M. & Frank, R. N. Vasoactive agonists do not change the caliber of retinal capillaries of the rat. Microvasc. Res. 50, 80–93 (1995)
    Article CAS Google Scholar
  23. Schonfelder, U., Hofer, A., Paul, M. & Funk, R. H. In situ observation of living pericytes in rat retinal capillaries. Microvasc. Res. 56, 22–29 (1998)
    Article CAS Google Scholar
  24. Shepro, D. & Morel, N. M. Pericyte physiology. FASEB J. 7, 1031–1038 (1993)
    Article CAS Google Scholar
  25. Sakagami, K., Kawamura, H., Wu, D. M. & Puro, D. G. Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes. Microvasc. Res. 62, 196–203 (2001)
    Article CAS Google Scholar
  26. Haefliger, I. O., Zschauer, A. & Anderson, D. R. Relaxation of retinal pericyte contractile tone through the nitric oxide–cyclic guanosine monophosphate pathway. Invest. Ophthalmol. 35, 991–997 (1994)
    CAS Google Scholar
  27. Simard, M., Arcuino, G., Takano, T., Liu, O. S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262 (2003)
    Article CAS Google Scholar
  28. Duffy, S. & MacVicar, B. A. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci. 15, 5535–5550 (1995)
    Article CAS Google Scholar
  29. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004)
    Article CAS Google Scholar
  30. Metea, M. R. & Newman, E. A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870 (2006)
    Article CAS Google Scholar

Download references