Bidirectional control of CNS capillary diameter by pericytes (original) (raw)
References
Roy, C. & Sherrington, C. On the regulation of the blood supply of the brain. J. Physiol. (Lond.)11, 85–100 (1890) ArticleCAS Google Scholar
Raichle, M. E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl Acad. Sci. USA95, 765–772 (1998) ArticleADSCAS Google Scholar
Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci.25, 621–625 (2002) ArticleCAS Google Scholar
Cohen, Z., Molinatti, G. & Hamel, E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J. Cereb. Blood Flow Metab.17, 894–904 (1997) ArticleCAS Google Scholar
Berg, B. R., Cohen, K. D. & Sarelius, I. H. Direct coupling between blood flow and metabolism at the capillary level in striated muscle. Am. J. Physiol.272, H2693–H2700 (1997) CASPubMed Google Scholar
Iadecola, C., Yang, G., Ebner, T. J. & Chen, G. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J. Neurophysiol.78, 651–659 (1997) ArticleCAS Google Scholar
Herman, I. M. & D'Amore, P. A. Microvascular pericytes contain muscle and nonmuscle actins. J. Cell Biol.101, 43–52 (1985) ArticleCAS Google Scholar
Rucker, H. K., Wynder, H. J. & Thomas, W. E. Cellular mechanisms of CNS pericytes. Brain Res. Bull.51, 363–369 (2000) ArticleCAS Google Scholar
Kawamura, H. et al. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J. Physiol. (Lond.)551, 787–799 (2003) ArticleCAS Google Scholar
Kawamura, H. et al. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina. J. Physiol. (Lond.)561, 671–683 (2004) ArticleCAS Google Scholar
Wu, D. M., Kawamura, H., Sakagami, K., Kobayashi, M. & Puro, D. G. Cholinergic regulation of pericyte-containing retinal microvessels. Am. J. Physiol. Heart Circ. Physiol.284, H2083–H2090 (2003) ArticleCAS Google Scholar
Hirase, H., Creso, J., Singleton, M., Bartho, P. & Buzsaki, G. Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes. Glia46, 95–100 (2004) Article Google Scholar
Hughes, S. & Chan-Ling, T. Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Invest. Ophthalmol. Vis. Sci.45, 2795–2806 (2004) Article Google Scholar
Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci.6, 43–50 (2003) ArticleCAS Google Scholar
Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature431, 195–199 (2004) ArticleADSCAS Google Scholar
Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nature Neurosci.9, 260–267 (2006) ArticleCAS Google Scholar
Newman, E. A. Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J. Neurosci.21, 2215–2223 (2001) ArticleCAS Google Scholar
Leffler, C. W., Beasley, D. G. & Busija, D. W. Cerebral ischemia alters cerebral microvascular reactivity in newborn pigs. Am. J. Physiol.257, H266–H271 (1989) CASPubMed Google Scholar
Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A. & Moskowitz, M. A. Oxygen radicals in cerebral ischemia. Am. J. Physiol.263, H1356–H1362 (1992) CASPubMed Google Scholar
Hauck, E. F., Apostel, S., Hoffmann, J. F., Heimann, A. & Kempski, O. Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy. J. Cereb. Blood Flow Metab.24, 383–391 (2004) Article Google Scholar
Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiol. Rev.65, 101–148 (1985) ArticleCAS Google Scholar
Butryn, R. K., Ruan, H., Hull, C. M. & Frank, R. N. Vasoactive agonists do not change the caliber of retinal capillaries of the rat. Microvasc. Res.50, 80–93 (1995) ArticleCAS Google Scholar
Schonfelder, U., Hofer, A., Paul, M. & Funk, R. H. In situ observation of living pericytes in rat retinal capillaries. Microvasc. Res.56, 22–29 (1998) ArticleCAS Google Scholar
Shepro, D. & Morel, N. M. Pericyte physiology. FASEB J.7, 1031–1038 (1993) ArticleCAS Google Scholar
Sakagami, K., Kawamura, H., Wu, D. M. & Puro, D. G. Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes. Microvasc. Res.62, 196–203 (2001) ArticleCAS Google Scholar
Haefliger, I. O., Zschauer, A. & Anderson, D. R. Relaxation of retinal pericyte contractile tone through the nitric oxide–cyclic guanosine monophosphate pathway. Invest. Ophthalmol.35, 991–997 (1994) CAS Google Scholar
Simard, M., Arcuino, G., Takano, T., Liu, O. S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci.23, 9254–9262 (2003) ArticleCAS Google Scholar
Duffy, S. & MacVicar, B. A. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci.15, 5535–5550 (1995) ArticleCAS Google Scholar
Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci.24, 8940–8949 (2004) ArticleCAS Google Scholar
Metea, M. R. & Newman, E. A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci.26, 2862–2870 (2006) ArticleCAS Google Scholar