Opioids block long-term potentiation of inhibitory synapses (original) (raw)

References

  1. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004)
    Article CAS Google Scholar
  2. Yim, C. Y. & Mogenson, G. Electrophysiological studies of neurons in the ventral tegmental area of Tsai. Brain Res. 181, 301–313 (1980)
    Article CAS Google Scholar
  3. Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992)
    Article CAS Google Scholar
  4. Zalutsky, R. A. & Nicoll, R. A. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619–1624 (1990)
    Article ADS CAS Google Scholar
  5. Stern, J. E. & Ludwig, M. NO inhibits supraoptic oxytocin and vasopressin neurons via activation of GABAergic synaptic inputs. Am. J. Physiol. 28, R1815–R1822 (2001)
    Google Scholar
  6. Li, D. P., Chen, S. R. & Pan, H. L. Nitric oxide inhibits spinally projecting paraventricular neurons through potentiation of presynaptic GABA release. J. Neurophysiol. 88, 2664–2674 (2002)
    Article CAS Google Scholar
  7. Yu, D. & Eldred, W. D. Nitric oxide stimulates γ-aminobutyric acid release and inhibits glycine release in retina. J. Comp. Neurol. 483, 278–291 (2005)
    Article CAS Google Scholar
  8. Klejbor, I., Domaradzka-Pytel, B., Ludkiewicz, B., Wojcik, S. & Morys, J. The relationships between neurons containing dopamine and nitric oxide synthase in the ventral tegmental area. Folia Histochem. Cytobiol. 42, 83–87 (2004)
    CAS PubMed Google Scholar
  9. Brenman, J. E. & Bredt, D. S. Synaptic signaling by nitric oxide. Curr. Opin. Neurobiol. 7, 374–378 (1997)
    Article CAS Google Scholar
  10. Safo, P. K., Cravatt, B. F. & Regehr, W. G. Retrograde endocannabinoid signaling in the cerebellar cortex. Cerebellum 5, 134–145 (2006)
    Article CAS Google Scholar
  11. Aizenman, C. D., Manis, P. B. & Linden, D. J. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21, 827–835 (1998)
    Article CAS Google Scholar
  12. Shew, T., Yip, S. & Sastry, B. R. Mechanisms involved in tetanus-induced potentiation of fast IPSCs in rat hippocampal CA1 neurons. J. Neurophysiol. 83, 3388–3401 (2001)
    Article Google Scholar
  13. Komatsu, Y. GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J. Neurosci. 16, 6342–6352 (1996)
    Article CAS Google Scholar
  14. Ouardouz, M. & Sastry, B. R. Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J. Neurophysiol. 84, 1414–1421 (2000)
    Article CAS Google Scholar
  15. Mansvelder, H. D. & McGehee, D. S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27, 349–357 (2000)
    Article CAS Google Scholar
  16. Ungless, M. A., Whistler, J. L., Malenka, R. C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001)
    Article ADS CAS Google Scholar
  17. Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577–582 (2003)
    Article CAS Google Scholar
  18. Faleiro, L. J., Jones, S. & Kauer, J. A. Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology 29, 2115–2125 (2004)
    Article CAS Google Scholar
  19. Liu, Q. S., Pu, L. & Poo, M. M. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 437, 1027–1031 (2005)
    Article ADS CAS Google Scholar
  20. Bonci, A. & Williams, J. T. A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16, 631–639 (1996)
    Article CAS Google Scholar
  21. Shoji, Y., Delfs, J. & Williams, J. T. Presynaptic inhibition of GABAB-mediated synaptic potentials in the ventral tegmental area during morphine withdrawal. J. Neurosci. 19, 2347–2355 (1999)
    Article CAS Google Scholar
  22. Melis, M., Camarini, R., Ungless, M. A. & Bonci, A. Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J. Neurosci. 22, 2074–2082 (2002)
    Article CAS Google Scholar
  23. Margolis, E. B. et al. κ opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc. Natl Acad. Sci. USA 103, 2938–2942 (2006)
    Article ADS CAS Google Scholar
  24. Schulteis, G., Heyser, C. J. & Koob, G. F. Opiate withdrawal signs precipitated by naloxone following a single exposure to morphine: potentiation with a second morphine exposure. Psychopharmacology 129, 56–65 (1997)
    Article CAS Google Scholar
  25. Vanderschuren, L. J., De Vries, T. J., Wardeh, G., Hogemboom, F. A. & Schoffelmeer, A. N. A single exposure to morphine induces long-lasting behavioural and neurochemical sensitization in rats. Eur. J. Neurosci. 14, 1533–1538 (2001)
    Article CAS Google Scholar
  26. Carlezon, W. A. et al. Sensitization to morphine induced by viral-mediated gene transfer. Science 277, 812–814 (1997)
    Article CAS Google Scholar
  27. Williams, J. T., Christie, M. J. & Manzoni, O. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81, 299–343 (2001)
    Article CAS Google Scholar
  28. Stromberg, M. F., Mackler, S. A., Volpicelli, J. R., O’Brien, C. P. & Dewey, S. L. The effect of γ-vinyl-GABA on the consumption of concurrently available oral cocaine and ethanol in the rat. Pharmacol. Biochem. Behav. 68, 291–299 (2001)
    Article CAS Google Scholar
  29. Brodie, J. D., Figueroa, E. & Dewey, S. L. Treating cocaine addiction: from preclinical to clinical trial experience with γ-vinyl GABA. Synapse 50, 261–265 (2003)
    Article CAS Google Scholar
  30. Barrett, A. C., Negus, S. S., Mello, N. K. & Caine, S. B. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats. J. Pharmacol. Exp. Ther. 315, 858–871 (2005)
    Article CAS Google Scholar

Download references