Morphological evolution through multiple cis-regulatory mutations at a single gene (original) (raw)

References

  1. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, Malden, 2001)
    Google Scholar
  2. Marcellini, S. & Simpson, P. Two or four bristles: functional evolution of an enhancer of scute in Drosophilidae. PLoS Biol. 4, e386 (2006)
    Article Google Scholar
  3. Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R. & Tabin, C. J. Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305, 1462–1465 (2004)
    Article ADS CAS Google Scholar
  4. Wang, X. & Chamberlin, H. M. Multiple regulatory changes contribute to the evolution of the Caenorhabditis lin-48 ovo gene. Genes Dev. 16, 2345–2349 (2002)
    Article CAS Google Scholar
  5. Doebley, J., Stec, A. & Gustus, C. teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141, 333–346 (1995)
    CAS PubMed PubMed Central Google Scholar
  6. Sucena, E. & Stern, D. L. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by _cis_-regulatory evolution of ovo/shaven-baby. Proc. Natl Acad. Sci. USA 97, 4530–4534 (2000)
    Article ADS CAS Google Scholar
  7. Stern, D. L. A role of Ultrabithorax in morphological differences between Drosophila species. Nature 396, 463–466 (1998)
    Article ADS CAS Google Scholar
  8. Yoon, H. S. & Baum, D. A. Transgenic study of parallelism in plant morphological evolution. Proc. Natl Acad. Sci. USA 101, 6524–6529 (2004)
    Article ADS CAS Google Scholar
  9. Wang, H. et al. The origin of the naked grains of maize. Nature 436, 714–719 (2005)
    Article ADS CAS Google Scholar
  10. Hay, A. & Tsiantis, M. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nature Genet. 38, 942–947 (2006)
    Article CAS Google Scholar
  11. Bokor, P. & DiNardo, S. The roles of hedgehog, wingless and lines in patterning the dorsal epidermis in Drosophila. Development 122, 1083–1092 (1996)
    CAS PubMed Google Scholar
  12. Payre, F., Vincent, A. & Carreno, S. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature 400, 271–275 (1999)
    Article ADS CAS Google Scholar
  13. Chanut-Delalande, H., Fernandes, I., Roch, F., Payre, F. & Plaza, S. Shavenbaby couples patterning to epidermal cell shape control. PLoS Biol. 4, e290 (2006)
    Article Google Scholar
  14. Sucena, E., Delon, I., Jones, I., Payre, F. & Stern, D. L. Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424, 935–938 (2003)
    Article ADS CAS Google Scholar
  15. Khila, A., El Haidani, A., Vincent, A., Payre, F. & Souda, S. I. The dual function of ovo/shavenbaby in germline and epidermis differentiation is conserved between Drosophila melanogaster and the olive fruit fly Bactrocera oleae. Insect Biochem. Mol. Biol. 33, 691–699 (2003)
    Article CAS Google Scholar
  16. Mével-Ninio, M., Terracol, R., Salles, C., Vincent, A. & Payre, F. ovo, a Drosophila gene required for ovarian development, is specifically expressed in the germline and shares most of its coding sequences with shavenbaby, a gene involved in embryo patterning. Mech. Dev. 49, 83–95 (1995)
    Article Google Scholar
  17. Clark, R. M., Wagler, T. N., Quijada, P. & Doebley, J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genet. 38, 594–597 (2006)
    Article CAS Google Scholar
  18. True, J. R., Mercer, J. M. & Laurie, C. C. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 142, 507–523 (1996)
    CAS PubMed PubMed Central Google Scholar
  19. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980)
    Article ADS CAS Google Scholar
  20. Wiellette, E. L. & McGinnis, W. Hox genes differentially regulate Serrate to generate segment-specific structures. Development 126, 1985–1995 (1999)
    CAS PubMed Google Scholar
  21. Walters, J. W., Munoz, C., Paaby, A. B. & Dinardo, S. Serrate-Notch signaling defines the scope of the initial denticle field by modulating EGFR activation. Dev. Biol. 286, 415–426 (2005)
    Article CAS Google Scholar
  22. Hatini, V., Green, R. B., Lengyel, J. A., Bray, S. J. & Dinardo, S. The Drumstick/Lines/Bowl regulatory pathway links antagonistic Hedgehog and Wingless signaling inputs to epidermal cell differentiation. Genes Dev. 19, 709–718 (2005)
    Article CAS Google Scholar
  23. Delon, I., Chanut-Delalande, H. & Payre, F. The Ovo/Shavenbaby transcription factor specifies actin remodelling during epidermal differentiation in Drosophila. Mech. Dev. 120, 747–758 (2003)
    Article CAS Google Scholar
  24. Stam, L. F. & Laurie, C. C. Molecular dissection of a major gene effect on a quantitative trait: The level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144, 1559–1564 (1996)
    CAS PubMed PubMed Central Google Scholar
  25. Prud’homme, B. et al. Repeated morphological evolution through _cis_-regulatory changes in a pleiotropic gene. Nature 440, 1050–1053 (2006)
    Article ADS Google Scholar
  26. Tao, H., Cox, D. R. & Frazer, K. A. Allele-specific KRT1 expression is a complex trait. PLoS Genet. 2, e93 (2006)
    Article Google Scholar
  27. Harr, B., Weiss, S., David, J. R., Brem, G. & Schlötterer, C. A microsatellite-based multilocus phylogeny of the Drosophila melanogaster species complex. Curr. Biol. 8, 1183–1186 (1998)
    Article CAS Google Scholar
  28. Powell, J. R. Progress and Prospects in Evolutionary Biology: The Drosophila Model (Oxford Univ. Press, New York, 1997)
    Google Scholar
  29. Thummel, C. S. & Pirrotta, V. New pCaSpeR P element vectors. Drosophila Info. Serv. 71, 150 (1992)
    Google Scholar
  30. Sharma, Y., Cheung, U., Larsen, E. W. & Eberl, D. F. PPTGAL, a convenient Gal4 P-element vector for testing expression of enhancer fragments in Drosophila. Genesis 34, 115–118 (2002)
    Article CAS Google Scholar
  31. Robertson, H. M. et al. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461–470 (1988)
    CAS PubMed PubMed Central Google Scholar
  32. Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982)
    Article ADS CAS Google Scholar
  33. Roch, F., Alonso, C. R. & Akam, M. Drosophila miniature and dusky encode ZP proteins required for cytoskeletal reorganisation during wing morphogenesis. J. Cell Sci. 116, 1199–1207 (2003)
    Article CAS Google Scholar
  34. Patel, N. H. et al. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58, 955–968 (1989)
    Article CAS Google Scholar
  35. Blochlinger, K., Bodmer, R., Jan, L. Y. & Jan, Y. N. Patterns of expression of cut, a protein required for external sensory organ development in wild-type and cut mutant Drosophila embryos. Genes Dev. 4, 1322–1331 (1990)
    Article CAS Google Scholar
  36. True, J. R., Mercer, J. M. & Laurie, C. C. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 142, 507–523 (1996)
    CAS PubMed PubMed Central Google Scholar
  37. Gleason, J. M., Cropp, K. A. & Dewoody, R. S. DNA preparations from fly wings for molecular marker assisted crosses. Drosophila Info. Serv. 87, 107–108 (2004)
    Google Scholar
  38. Stern, D. L. & Sucena, E. in Drosophila: A Laboratory Manual (eds Ashburner, M., Hawley, S. & Sullivan, B.) 601–615 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000)
    Google Scholar

Download references