Gap junction adhesion is necessary for radial migration in the neocortex (original) (raw)

References

  1. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001)
    Article ADS CAS Google Scholar
  2. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000)
    CAS PubMed Google Scholar
  3. Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33, 471–476 (1971)
    Article CAS Google Scholar
  4. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972)
    Article CAS Google Scholar
  5. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988)
    Article ADS CAS Google Scholar
  6. Gregory, W. A., Edmondson, J. C., Hatten, M. E. & Mason, C. A. Cytology and neuron–glial apposition of migrating cerebellar granule cells in vitro. J. Neurosci. 8, 1728–1738 (1988)
    Article CAS Google Scholar
  7. Gadisseux, J. F., Kadhim, H. J., van den Bosch de Aguilar, P., Caviness, V. S. & Evrard, P. Neuron migration within the radial glial fiber system of the developing murine cerebrum: an electron microscopic autoradiographic analysis. Brain Res. Dev. Brain Res. 52, 39–56 (1990)
    Article CAS Google Scholar
  8. Cameron, R. S. & Rakic, P. Identification of membrane proteins that comprise the plasmalemmal junction between migrating neurons and radial glial cells. J. Neurosci. 14, 3139–3155 (1994)
    Article CAS Google Scholar
  9. Fishell, G. & Hatten, M. E. Astrotactin provides a receptor system for CNS neuronal migration. Development 113, 755–765 (1991)
    CAS PubMed Google Scholar
  10. Adams, N. C., Tomoda, T., Cooper, M., Dietz, G. & Hatten, M. E. Mice that lack astrotactin have slowed neuronal migration. Development 129, 965–972 (2002)
    CAS PubMed Google Scholar
  11. Anton, E. S., Marchionni, M. A., Lee, K. F. & Rakic, P. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124, 3501–3510 (1997)
    CAS PubMed Google Scholar
  12. Anton, E. S., Kreidberg, J. A. & Rakic, P. Distinct functions of α3 and αv integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22, 277–289 (1999)
    Article CAS Google Scholar
  13. Nadarajah, B., Jones, A. M., Evans, W. H. & Parnavelas, J. G. Differential expression of connexins during neocortical development and neuronal circuit formation. J. Neurosci. 17, 3096–3111 (1997)
    Article CAS Google Scholar
  14. Fushiki, S. et al. Changes in neuronal migration in neocortex of connexin43 null mutant mice. J. Neuropathol. Exp. Neurol. 62, 304–314 (2003)
    Article CAS Google Scholar
  15. Huang, G. Y. et al. Gap junction-mediated cell–cell communication modulates mouse neural crest migration. J. Cell Biol. 143, 1725–1734 (1998)
    Article CAS Google Scholar
  16. Lo, C. W., Waldo, K. L. & Kirby, M. L. Gap junction communication and the modulation of cardiac neural crest cells. Trends Cardiovasc. Med. 9, 63–69 (1999)
    Article CAS Google Scholar
  17. Lin, J. H. et al. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J. Neurosci. 22, 4302–4311 (2002)
    Article CAS Google Scholar
  18. Oliveira, R. et al. Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol. 6, 7 (2005)
    Article Google Scholar
  19. Harris, A. L. Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys. 34, 325–472 (2001)
    Article CAS Google Scholar
  20. Dermietzel, R. et al. Differential expression of three gap junction proteins in developing and mature brain tissues. Proc. Natl Acad. Sci. USA 86, 10148–10152 (1989)
    Article ADS CAS Google Scholar
  21. Lo Turco, J. J. & Kriegstein, A. R. Clusters of coupled neuroblasts in embryonic neocortex. Science 252, 563–566 (1991)
    Article ADS CAS Google Scholar
  22. Bittman, K., Owens, D. F., Kriegstein, A. R. & LoTurco, J. J. Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci. 17, 7037–7044 (1997)
    Article CAS Google Scholar
  23. Weissman, T. A., Riquelme, P. A., Ivic, L., Flint, A. C. & Kriegstein, A. R. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43, 647–661 (2004)
    Article CAS Google Scholar
  24. Falk, M. M. Connexin-specific distribution within gap junctions revealed in living cells. J. Cell Sci. 113, 4109–4120 (2000)
    CAS PubMed Google Scholar
  25. Beahm, D. L. et al. Mutation of a conserved threonine in the third transmembrane helix of α- and β-connexins creates a dominant-negative closed gap junction channel. J. Biol. Chem. 281, 7994–8009 (2006)
    Article CAS Google Scholar
  26. Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17, 275–285 (1996)
    Article CAS Google Scholar
  27. Giepmans, B. N. & Moolenaar, W. H. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr. Biol. 8, 931–934 (1998)
    Article CAS Google Scholar
  28. Lin, R., Warn-Cramer, B. J., Kurata, W. E. & Lau, A. F. v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J. Cell Biol. 154, 815–827 (2001)
    Article CAS Google Scholar
  29. Giepmans, B. N. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr. Biol. 11, 1364–1368 (2001)
    Article CAS Google Scholar
  30. Naus, C. C., Bechberger, J. F., Caveney, S. & Wilson, J. X. Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci. Lett. 126, 33–36 (1991)
    Article CAS Google Scholar
  31. Lai, A. et al. Oculodentodigital dysplasia connexin43 mutations result in non-functional connexin hemichannels and gap junctions in C6 glioma cells. J. Cell Sci. 119, 532–541 (2006)
    Article CAS Google Scholar
  32. Xu, X., Francis, R., Wei, C. J., Linask, K. L. & Lo, C. W. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 133, 3629–3639 (2006)
    Article CAS Google Scholar
  33. Schaar, B. T. & McConnell, S. K. Cytoskeletal coordination during neuronal migration. Proc. Natl Acad. Sci. USA 102, 13652–13657 (2005)
    Article ADS CAS Google Scholar
  34. Tsai, J. W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature Neurosci. 10, 970–979; advance online publication, doi:10.1038/nn1934 (8 July 2007)
  35. Wiencken-Barger, A. E., Djukic, B., Casper, K. B. & McCarthy, K. D. A role for Connexin43 during neurodevelopment. Glia 55, 675–686 (2007)
    Article Google Scholar
  36. Xu, X. et al. Modulation of mouse neural crest cell motility by N-cadherin and connexin 43 gap junctions. J. Cell Biol. 154, 217–230 (2001)
    Article CAS Google Scholar
  37. Meyer, R. A., Laird, D. W., Revel, J. P. & Johnson, R. G. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol. 119, 179–189 (1992)
    Article CAS Google Scholar
  38. Dulabon, L. et al. Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27, 33–44 (2000)
    Article CAS Google Scholar
  39. Schmid, R. S., Jo, R., Shelton, S., Kreidberg, J. A. & Anton, E. S. Reelin, integrin and DAB1 interactions during embryonic cerebral cortical development. Cereb. Cortex 15, 1632–1636 (2005)
    Article Google Scholar
  40. el-Sabban, M. E. & Pauli, B. U. Adhesion-mediated gap junctional communication between lung-metastatatic cancer cells and endothelium. Invasion Metastasis 14, 164–176 (1994)
    CAS PubMed Google Scholar
  41. Ito, A. et al. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest. 105, 1189–1197 (2000)
    Article CAS Google Scholar
  42. Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002)
    Article ADS CAS Google Scholar
  43. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001)
    Article CAS Google Scholar
  44. Walantus, W., Elias, L. & Kriegstein, A. R. In utero intraventricular injection and electroporation of E16 rat embryos. J. Visualized Exp. 6http://www.jove.com/index/Details.stp?ID=236&VID=222〉 (2007)
  45. Elias, L. & Kriegstein, A. R. Organotypic slice culture of E18 rat brains. J. Visualized Exp.. 6http://www.jove.com/index/Details.stp?ID=235&VID=221〉 (2007)

Download references