Gap junction adhesion is necessary for radial migration in the neocortex (original) (raw)
References
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714–720 (2001) ArticleADSCAS Google Scholar
Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development127, 5253–5263 (2000) CASPubMed Google Scholar
Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res.33, 471–476 (1971) ArticleCAS Google Scholar
Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol.145, 61–83 (1972) ArticleCAS Google Scholar
Gregory, W. A., Edmondson, J. C., Hatten, M. E. & Mason, C. A. Cytology and neuron–glial apposition of migrating cerebellar granule cells in vitro. J. Neurosci.8, 1728–1738 (1988) ArticleCAS Google Scholar
Gadisseux, J. F., Kadhim, H. J., van den Bosch de Aguilar, P., Caviness, V. S. & Evrard, P. Neuron migration within the radial glial fiber system of the developing murine cerebrum: an electron microscopic autoradiographic analysis. Brain Res. Dev. Brain Res.52, 39–56 (1990) ArticleCAS Google Scholar
Cameron, R. S. & Rakic, P. Identification of membrane proteins that comprise the plasmalemmal junction between migrating neurons and radial glial cells. J. Neurosci.14, 3139–3155 (1994) ArticleCAS Google Scholar
Fishell, G. & Hatten, M. E. Astrotactin provides a receptor system for CNS neuronal migration. Development113, 755–765 (1991) CASPubMed Google Scholar
Adams, N. C., Tomoda, T., Cooper, M., Dietz, G. & Hatten, M. E. Mice that lack astrotactin have slowed neuronal migration. Development129, 965–972 (2002) CASPubMed Google Scholar
Anton, E. S., Marchionni, M. A., Lee, K. F. & Rakic, P. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development124, 3501–3510 (1997) CASPubMed Google Scholar
Anton, E. S., Kreidberg, J. A. & Rakic, P. Distinct functions of α3 and αv integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron22, 277–289 (1999) ArticleCAS Google Scholar
Nadarajah, B., Jones, A. M., Evans, W. H. & Parnavelas, J. G. Differential expression of connexins during neocortical development and neuronal circuit formation. J. Neurosci.17, 3096–3111 (1997) ArticleCAS Google Scholar
Fushiki, S. et al. Changes in neuronal migration in neocortex of connexin43 null mutant mice. J. Neuropathol. Exp. Neurol.62, 304–314 (2003) ArticleCAS Google Scholar
Huang, G. Y. et al. Gap junction-mediated cell–cell communication modulates mouse neural crest migration. J. Cell Biol.143, 1725–1734 (1998) ArticleCAS Google Scholar
Lo, C. W., Waldo, K. L. & Kirby, M. L. Gap junction communication and the modulation of cardiac neural crest cells. Trends Cardiovasc. Med.9, 63–69 (1999) ArticleCAS Google Scholar
Lin, J. H. et al. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J. Neurosci.22, 4302–4311 (2002) ArticleCAS Google Scholar
Oliveira, R. et al. Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol.6, 7 (2005) Article Google Scholar
Harris, A. L. Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys.34, 325–472 (2001) ArticleCAS Google Scholar
Dermietzel, R. et al. Differential expression of three gap junction proteins in developing and mature brain tissues. Proc. Natl Acad. Sci. USA86, 10148–10152 (1989) ArticleADSCAS Google Scholar
Lo Turco, J. J. & Kriegstein, A. R. Clusters of coupled neuroblasts in embryonic neocortex. Science252, 563–566 (1991) ArticleADSCAS Google Scholar
Bittman, K., Owens, D. F., Kriegstein, A. R. & LoTurco, J. J. Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci.17, 7037–7044 (1997) ArticleCAS Google Scholar
Weissman, T. A., Riquelme, P. A., Ivic, L., Flint, A. C. & Kriegstein, A. R. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron43, 647–661 (2004) ArticleCAS Google Scholar
Falk, M. M. Connexin-specific distribution within gap junctions revealed in living cells. J. Cell Sci.113, 4109–4120 (2000) CASPubMed Google Scholar
Beahm, D. L. et al. Mutation of a conserved threonine in the third transmembrane helix of α- and β-connexins creates a dominant-negative closed gap junction channel. J. Biol. Chem.281, 7994–8009 (2006) ArticleCAS Google Scholar
Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron17, 275–285 (1996) ArticleCAS Google Scholar
Giepmans, B. N. & Moolenaar, W. H. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr. Biol.8, 931–934 (1998) ArticleCAS Google Scholar
Lin, R., Warn-Cramer, B. J., Kurata, W. E. & Lau, A. F. v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J. Cell Biol.154, 815–827 (2001) ArticleCAS Google Scholar
Giepmans, B. N. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr. Biol.11, 1364–1368 (2001) ArticleCAS Google Scholar
Naus, C. C., Bechberger, J. F., Caveney, S. & Wilson, J. X. Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci. Lett.126, 33–36 (1991) ArticleCAS Google Scholar
Lai, A. et al. Oculodentodigital dysplasia connexin43 mutations result in non-functional connexin hemichannels and gap junctions in C6 glioma cells. J. Cell Sci.119, 532–541 (2006) ArticleCAS Google Scholar
Xu, X., Francis, R., Wei, C. J., Linask, K. L. & Lo, C. W. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development133, 3629–3639 (2006) ArticleCAS Google Scholar
Schaar, B. T. & McConnell, S. K. Cytoskeletal coordination during neuronal migration. Proc. Natl Acad. Sci. USA102, 13652–13657 (2005) ArticleADSCAS Google Scholar
Tsai, J. W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature Neurosci.10, 970–979; advance online publication, doi:10.1038/nn1934 (8 July 2007)
Wiencken-Barger, A. E., Djukic, B., Casper, K. B. & McCarthy, K. D. A role for Connexin43 during neurodevelopment. Glia55, 675–686 (2007) Article Google Scholar
Xu, X. et al. Modulation of mouse neural crest cell motility by N-cadherin and connexin 43 gap junctions. J. Cell Biol.154, 217–230 (2001) ArticleCAS Google Scholar
Meyer, R. A., Laird, D. W., Revel, J. P. & Johnson, R. G. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol.119, 179–189 (1992) ArticleCAS Google Scholar
Dulabon, L. et al. Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron27, 33–44 (2000) ArticleCAS Google Scholar
Schmid, R. S., Jo, R., Shelton, S., Kreidberg, J. A. & Anton, E. S. Reelin, integrin and DAB1 interactions during embryonic cerebral cortical development. Cereb. Cortex15, 1632–1636 (2005) Article Google Scholar
el-Sabban, M. E. & Pauli, B. U. Adhesion-mediated gap junctional communication between lung-metastatatic cancer cells and endothelium. Invasion Metastasis14, 164–176 (1994) CASPubMed Google Scholar
Ito, A. et al. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest.105, 1189–1197 (2000) ArticleCAS Google Scholar
Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science295, 868–872 (2002) ArticleADSCAS Google Scholar
Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol.240, 237–246 (2001) ArticleCAS Google Scholar