Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors (original) (raw)
References
Weissman, I. L. Stem cells: units of development, units of regeneration, and units of evolution. Cell100, 157–168 (2000) ArticleCAS Google Scholar
Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature401, 556–562 (1999) ArticleADSCAS Google Scholar
Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature401, 603–606 (1999) ArticleADSCAS Google Scholar
Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity14, 779–790 (2001) ArticleCAS Google Scholar
Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol.8, 463–470 (2007) ArticleCAS Google Scholar
Rickert, R. C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res.25, 1317–1318 (1997) ArticleCAS Google Scholar
Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity24, 269–281 (2006) ArticleCAS Google Scholar
Holmes, M. L., Carotta, S., Corcoran, L. M. & Nutt, S. L. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev.20, 933–938 (2006) ArticleCAS Google Scholar
Fuxa, M. et al. Pax5 induces _V_-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev.18, 411–422 (2004) ArticleCAS Google Scholar
Sato, H., Saito-Ohara, F., Inazawa, J. & Kudo, A. Pax-5 is essential for κ sterile transcription during Igκ chain gene rearrangement. J. Immunol.172, 4858–4865 (2004) ArticleCAS Google Scholar
Schwenk, F., Kühn, R., Angrand, P.-O., Rajewsky, K. & Stewart, A. F. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res.26, 1427–1432 (1998) ArticleCAS Google Scholar
Sudo, T. et al. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl Acad. Sci. USA90, 9125–9129 (1993) ArticleADSCAS Google Scholar
Nutt, S. L., Morrison, A. M., Dörfler, P., Rolink, A. & Busslinger, M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J.17, 2319–2333 (1998) ArticleCAS Google Scholar
Schaniel, C., Bruno, L., Melchers, F. & Rolink, A. G. Multiple hematopoietic cell lineages develop in vivo from transplanted _Pax5_-deficient pre-B I-cell clones. Blood99, 472–478 (2002) ArticleCAS Google Scholar
Philpott, K. L. et al. Lymphoid development in mice congenitally lacking T cell receptor αβ-expressing cells. Science256, 1448–1452 (1992) ArticleADSCAS Google Scholar
Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell117, 663–676 (2004) ArticleCAS Google Scholar
Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature448, 313–317 (2007) ArticleADSCAS Google Scholar
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007) ArticleADSCAS Google Scholar
Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. Science297, 110–113 (2002) ArticleADSCAS Google Scholar
Förster, I. & Rajewsky, K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc. Natl Acad. Sci. USA87, 4781–4784 (1990) ArticleADS Google Scholar
Rolink, A. G., Andersson, J. & Melchers, F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur. J. Immunol.28, 3738–3748 (1998) ArticleCAS Google Scholar
Schebesta, A. et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration and immune function. Immunity27, 49–63 (2007) ArticleCAS Google Scholar
Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nature Rev. Immunol.5, 230–242 (2005) ArticleCAS Google Scholar
Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature446, 758–764 (2007) ArticleADSCAS Google Scholar
Schaniel, C., Gottar, M., Roosnek, E., Melchers, F. & Rolink, A. G. Extensive in vivo self-renewal, long-term reconstitution capacity, and hematopoietic multipotency of Pax5-deficient precursor B-cell clones. Blood99, 2760–2766 (2002) ArticleCAS Google Scholar
Dalerba, P., Cho, R. W. & Clarke, M. F. Cancer stem cells: models and concepts. Annu. Rev. Med.58, 267–284 (2007) ArticleCAS Google Scholar
Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet.33, 416–421 (2003) ArticleCAS Google Scholar
Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science306, 269–271 (2004) ArticleADSCAS Google Scholar
Grigoriadis, A. E., Schellander, K., Wang, Z.-Q. & Wagner, E. F. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol.122, 685–701 (1993) ArticleCAS Google Scholar
Fleischmann, A., Jochum, W., Eferl, R., Witowsky, J. & Wagner, E. F. Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene. Cancer Cell4, 477–482 (2003) ArticleCAS Google Scholar
Urbánek, P., Wang, Z.-Q., Fetka, I., Wagner, E. F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell79, 901–912 (1994) Article Google Scholar
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell68, 855–867 (1992) ArticleCAS Google Scholar
Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature376, 352–355 (1995) ArticleADSCAS Google Scholar
Strasser, A., Harris, A. W. & Cory, S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell67, 889–899 (1991) ArticleCAS Google Scholar
Schlissel, M. S., Corcoran, L. M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med.173, 711–720 (1991) ArticleCAS Google Scholar
Shaw, A. C., Swat, W., Davidson, L. & Alt, F. W. Induction of Ig light chain gene rearrangement in heavy chain-deficient B cells by activated Ras. Proc. Natl Acad. Sci. USA96, 2239–2243 (1999) ArticleADSCAS Google Scholar
Wolfer, A., Wilson, A., Nemir, M., MacDonald, H. R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity16, 869–879 (2002) ArticleCAS Google Scholar
Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity21, 81–93 (2004) ArticleCAS Google Scholar
Barch, M. J., Knutsen, T. & Spurbeck, J. L. The AGT Cytogenetic Laboratory Manual (Lippincott, Philadelphia, 1997) Google Scholar
Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell21, 201–214 (2006) ArticleCAS Google Scholar