Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors (original) (raw)

References

  1. Weissman, I. L. Stem cells: units of development, units of regeneration, and units of evolution. Cell 100, 157–168 (2000)
    Article CAS Google Scholar
  2. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999)
    Article ADS CAS Google Scholar
  3. Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999)
    Article ADS CAS Google Scholar
  4. Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001)
    Article CAS Google Scholar
  5. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol. 8, 463–470 (2007)
    Article CAS Google Scholar
  6. Rickert, R. C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997)
    Article CAS Google Scholar
  7. Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006)
    Article CAS Google Scholar
  8. Holmes, M. L., Carotta, S., Corcoran, L. M. & Nutt, S. L. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev. 20, 933–938 (2006)
    Article CAS Google Scholar
  9. Fuxa, M. et al. Pax5 induces _V_-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004)
    Article CAS Google Scholar
  10. Sato, H., Saito-Ohara, F., Inazawa, J. & Kudo, A. Pax-5 is essential for κ sterile transcription during Igκ chain gene rearrangement. J. Immunol. 172, 4858–4865 (2004)
    Article CAS Google Scholar
  11. Schwenk, F., Kühn, R., Angrand, P.-O., Rajewsky, K. & Stewart, A. F. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432 (1998)
    Article CAS Google Scholar
  12. Sudo, T. et al. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl Acad. Sci. USA 90, 9125–9129 (1993)
    Article ADS CAS Google Scholar
  13. Nutt, S. L., Morrison, A. M., Dörfler, P., Rolink, A. & Busslinger, M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 17, 2319–2333 (1998)
    Article CAS Google Scholar
  14. Schaniel, C., Bruno, L., Melchers, F. & Rolink, A. G. Multiple hematopoietic cell lineages develop in vivo from transplanted _Pax5_-deficient pre-B I-cell clones. Blood 99, 472–478 (2002)
    Article CAS Google Scholar
  15. Philpott, K. L. et al. Lymphoid development in mice congenitally lacking T cell receptor αβ-expressing cells. Science 256, 1448–1452 (1992)
    Article ADS CAS Google Scholar
  16. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004)
    Article CAS Google Scholar
  17. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007)
    Article ADS CAS Google Scholar
  18. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007)
    Article ADS CAS Google Scholar
  19. Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. Science 297, 110–113 (2002)
    Article ADS CAS Google Scholar
  20. Förster, I. & Rajewsky, K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc. Natl Acad. Sci. USA 87, 4781–4784 (1990)
    Article ADS Google Scholar
  21. Rolink, A. G., Andersson, J. & Melchers, F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur. J. Immunol. 28, 3738–3748 (1998)
    Article CAS Google Scholar
  22. Schebesta, A. et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration and immune function. Immunity 27, 49–63 (2007)
    Article CAS Google Scholar
  23. Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nature Rev. Immunol. 5, 230–242 (2005)
    Article CAS Google Scholar
  24. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007)
    Article ADS CAS Google Scholar
  25. Schaniel, C., Gottar, M., Roosnek, E., Melchers, F. & Rolink, A. G. Extensive in vivo self-renewal, long-term reconstitution capacity, and hematopoietic multipotency of Pax5-deficient precursor B-cell clones. Blood 99, 2760–2766 (2002)
    Article CAS Google Scholar
  26. Dalerba, P., Cho, R. W. & Clarke, M. F. Cancer stem cells: models and concepts. Annu. Rev. Med. 58, 267–284 (2007)
    Article CAS Google Scholar
  27. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003)
    Article CAS Google Scholar
  28. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004)
    Article ADS CAS Google Scholar
  29. Grigoriadis, A. E., Schellander, K., Wang, Z.-Q. & Wagner, E. F. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122, 685–701 (1993)
    Article CAS Google Scholar
  30. Fleischmann, A., Jochum, W., Eferl, R., Witowsky, J. & Wagner, E. F. Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene. Cancer Cell 4, 477–482 (2003)
    Article CAS Google Scholar
  31. Urbánek, P., Wang, Z.-Q., Fetka, I., Wagner, E. F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994)
    Article Google Scholar
  32. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992)
    Article CAS Google Scholar
  33. Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995)
    Article ADS CAS Google Scholar
  34. Strasser, A., Harris, A. W. & Cory, S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899 (1991)
    Article CAS Google Scholar
  35. Schlissel, M. S., Corcoran, L. M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991)
    Article CAS Google Scholar
  36. Shaw, A. C., Swat, W., Davidson, L. & Alt, F. W. Induction of Ig light chain gene rearrangement in heavy chain-deficient B cells by activated Ras. Proc. Natl Acad. Sci. USA 96, 2239–2243 (1999)
    Article ADS CAS Google Scholar
  37. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H. R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002)
    Article CAS Google Scholar
  38. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004)
    Article CAS Google Scholar
  39. Barch, M. J., Knutsen, T. & Spurbeck, J. L. The AGT Cytogenetic Laboratory Manual (Lippincott, Philadelphia, 1997)
    Google Scholar
  40. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006)
    Article CAS Google Scholar

Download references