Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease (original) (raw)
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002) ArticleCASADSPubMed Google Scholar
Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science307, 1282–1288 (2005) ArticleCASADSPubMed Google Scholar
Jankowsky, J. L. et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Eng.17, 157–165 (2001) ArticleCASPubMed Google Scholar
Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet.13, 159–170 (2004) ArticleCASPubMed Google Scholar
Kawai, M., Kalaria, R. N., Harik, S. I. & Perry, G. The relationship of amyloid plaques to cerebral capillaries in Alzheimer’s disease. Am. J. Pathol.137, 1435–1446 (1990) CASPubMedPubMed Central Google Scholar
Kumar-Singh, S. et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am. J. Pathol.167, 527–543 (2005) ArticleCASPubMedPubMed Central Google Scholar
Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science274, 99–102 (1996) ArticleCASADSPubMed Google Scholar
Hyman, B. T. et al. Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc. Natl Acad. Sci. USA92, 3586–3590 (1995) ArticleCASADSPubMedPubMed Central Google Scholar
Itagaki, S., McGeer, P. L., Akiyama, H., Zhu, S. & Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol.24, 173–182 (1989) ArticleCASPubMed Google Scholar
Frautschy, S. A. et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol.152, 307–317 (1998) CASPubMedPubMed Central Google Scholar
Combs, C. K., Karlo, J. C., Kao, S. C. & Landreth, G. E. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci.21, 1179–1188 (2001) ArticleCASPubMedPubMed Central Google Scholar
Qin, S. et al. System Xc- and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-β peptide 1–40. J. Neurosci.26, 3345–3356 (2006) ArticleCASPubMedPubMed Central Google Scholar
Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400, 173–177 (1999) ArticleCASADSPubMed Google Scholar
Nagele, R. G., Wegiel, J., Venkataraman, V., Imaki, H. & Wang, K. C. Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol. Aging25, 663–674 (2004) ArticleCASPubMed Google Scholar
Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron49, 489–502 (2006) ArticleCASPubMed Google Scholar
Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature373, 523–527 (1995) ArticleCASADSPubMed Google Scholar
Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol.20, 4106–4114 (2000) ArticleCASPubMedPubMed Central Google Scholar
Bacskai, B. J. et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nature Med.7, 369–372 (2001) ArticleCASPubMed Google Scholar
Geula, C. et al. Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nature Med.4, 827–831 (1998) ArticleCASPubMed Google Scholar
Knowles, R. B. et al. Plaque-induced neurite abnormalities: implications for disruption of neural networks in Alzheimer’s disease. Proc. Natl Acad. Sci. USA96, 5274–5279 (1999) ArticleCASADSPubMedPubMed Central Google Scholar
Le, R. et al. Plaque-induced abnormalities in neurite geometry in transgenic models of Alzheimer disease: implications for neural system disruption. J. Neuropathol. Exp. Neurol.60, 753–758 (2001) ArticleCASPubMed Google Scholar
Jarrett, J. T. & Lansbury, P. T. Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell73, 1055–1058 (1993) ArticleCASPubMed Google Scholar
Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science313, 1781–1784 (2006) ArticleCASADSPubMed Google Scholar
Walsh, D. M. et al. Naturally secreted oligomers of amyloid-β protein potently inhibit hippocampal long-term potentiation in vivo . Nature416, 535–539 (2002) ArticleCASADSPubMed Google Scholar
Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440, 352–357 (2006) ArticleCASADSPubMed Google Scholar
Spires, T. L. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci.25, 7278–7287 (2005) ArticleCASPubMedPubMed Central Google Scholar
Klunk, W. E. et al. Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J. Neuropathol. Exp. Neurol.61, 797–805 (2002) ArticleCASPubMed Google Scholar