Structure of a β1-adrenergic G-protein-coupled receptor (original) (raw)
Fredriksson, R. & Schioth, H. B. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol.67, 1414–1425 (2005) CASPubMed Google Scholar
Hubbell, W. L., Altenbach, C., Hubbell, C. M. & Khorana, H. G. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem.63, 243–290 (2003) CASPubMed Google Scholar
Altenbach, C. et al. High resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl Acad. Sci. USA105, 7439–7444 (2008) ADSCASPubMedPubMed Central Google Scholar
Foord, S. M. et al. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev.57, 279–288 (2005) CASPubMed Google Scholar
Baldwin, J. M., Schertler, G. F. & Unger, V. M. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J. Mol. Biol.272, 144–164 (1997) CASPubMed Google Scholar
Bockaert, J. & Pin, J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J.18, 1723–1729 (1999) CASPubMedPubMed Central Google Scholar
Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. Methods Neurosci.25, 366–428 (1995) CAS Google Scholar
Black, J. W. Drugs from emasculated hormones — the principle of syntopic antagonism (Nobel lecture). Angew. Chem. Int. Edn Engl.28, 886–894 (1989) Google Scholar
Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature450, 383–387 (2007) ADSCASPubMed Google Scholar
Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science318, 1258–1265 (2007) ADSCASPubMedPubMed Central Google Scholar
Baker, J. G. The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. Br. J. Pharmacol.144, 317–322 (2005) CASPubMedPubMed Central Google Scholar
Sugimoto, Y. et al. β1-selective agonist (-)-1-(3,4-dimethoxyphenetylamino)-3-(3,4-dihydroxy)-2-propanol [(-)-RO363] differentially interacts with key amino acids responsible for β1-selective binding in resting and active states. J. Pharmacol. Exp. Ther.301, 51–58 (2002) CASPubMed Google Scholar
Gether, U. et al. Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J. Biol. Chem.272, 2587–2590 (1997) CASPubMed Google Scholar
Parker, E. M., Kameyama, K., Higashijima, T. & Ross, E. M. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J. Biol. Chem.266, 519–527 (1991) CASPubMed Google Scholar
Serrano-Vega, M. J., Magnani, F., Shibata, Y. & Tate, C. G. Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc. Natl Acad. Sci. USA105, 877–882 (2008) ADSCASPubMedPubMed Central Google Scholar
Baker, J. G. Site of action of β-ligands at the human β1-adrenoceptor. J. Pharmacol. Exp. Ther.313, 1163–1171 (2005) CASPubMed Google Scholar
Lattion, A., Abuin, L., Nenniger-Tosato, M. & Cotecchia, S. Constitutively active mutants of the β1-adrenergic receptor. FEBS Lett.457, 302–306 (1999) CASPubMed Google Scholar
Samama, P. et al. Negative antagonists promote an inactive conformation of the β2-adrenergic receptor. Mol. Pharmacol.45, 390–394 (1994) CASPubMed Google Scholar
Yarden, Y. et al. The avian β-adrenergic receptor: primary structure and membrane topology. Proc. Natl Acad. Sci. USA83, 6795–6799 (1986) ADSCASPubMedPubMed Central Google Scholar
Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D58, 872–874 (2002) PubMed Google Scholar
Burstein, E. S., Spalding, T. A. & Brann, M. R. The second intracellular loop of the m5 muscarinic receptor is the switch which enables G-protein coupling. J. Biol. Chem.273, 24322–24327 (1998) CASPubMed Google Scholar
Wong, S. K. F., Parker, E. M. & Ross, E. M. Chimeric muscarinic cholinergic β-adrenergic receptors that activate Gs in response to muscarinic agonists. J. Biol. Chem.265, 6219–6224 (1990) CASPubMed Google Scholar
Wong, S. K. F. & Ross, E. M. Chimeric muscarinic cholinergic:β-adrenergic receptors that are functionally promiscuous among G-proteins. J. Biol. Chem.269, 18968–18976 (1994) CASPubMed Google Scholar
Wess, J., Bonner, T. I., Dorje, F. & Brann, M. R. Delineation of muscarinic receptor domains conferring selectivity of coupling to guanine nucleotide-binding proteins and 2nd messengers. Mol. Pharmacol.38, 517–523 (1990) CASPubMed Google Scholar
Scarselli, M., Li, B., Kim, S. K. & Wess, J. Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J. Biol. Chem.282, 7385–7396 (2007) CASPubMed Google Scholar
Li, J. et al. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol.343, 1409–1438 (2004) CASPubMed Google Scholar
Ballesteros, J. A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem.276, 29171–29177 (2001) CASPubMed Google Scholar
Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science289, 739–745 (2000) ADSCASPubMed Google Scholar
Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure. J. Mol. Biol.342, 571–583 (2004) CASPubMed Google Scholar
Kikkawa, H., Isogaya, M., Nagao, T. & Kurose, H. The role of the seventh transmembrane region in high affinity binding of a β2-selective agonist TA-2005. Mol. Pharmacol.53, 128–134 (1998) CASPubMed Google Scholar
Isogaya, M. et al. Identification of a key amino acid of the β2-adrenergic receptor for high affinity binding of salmeterol. Mol. Pharmacol.54, 616–622 (1998) CASPubMed Google Scholar
Shi, L. & Javitch, J. A. The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc. Natl Acad. Sci. USA101, 440–445 (2004) ADSCASPubMedPubMed Central Google Scholar
Klco, J. M., Wiegand, C. B., Narzinski, K. & Baranski, T. J. Essential role for the second extracellular loop in C5a receptor activation. Nature Struct. Mol. Biol.12, 320–326 (2005) CAS Google Scholar
Voigtlander, U. et al. Allosteric site on muscarinic acetylcholine receptors: Identification of two amino acids in the muscarinic M-2 receptor that account entirely for the M-2/M-5 subtype selectivities of some structurally diverse allosteric ligands in _N_-methylscopolamine-occupied receptors. Mol. Pharmacol.64, 21–31 (2003) PubMed Google Scholar
Avlani, V. A. et al. Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J. Biol. Chem.282, 25677–25686 (2007) CASPubMed Google Scholar
Sato, T., Kobayashi, H., Nagao, T. & Kurose, H. Ser(203) as well as Ser(204) and Ser(207) in fifth transmembrane domain of the human β2-adrenoceptor contributes to agonist binding and receptor activation. Br. J. Pharmacol.128, 272–274 (1999) CASPubMedPubMed Central Google Scholar
Strader, C. D. et al. Identification of 2 serine residues involved in agonist activation of the β-adrenergic-receptor. J. Biol. Chem.264, 13572–13578 (1989) CASPubMed Google Scholar
Liapakis, G. et al. The forgotten serine — A critical role for Ser-203(5.42) in ligand binding to and activation of the β2-adrenergic receptor. J. Biol. Chem.275, 37779–37788 (2000) CASPubMed Google Scholar
Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science318, 1266–1273 (2007) ADSCASPubMed Google Scholar
Elling, C. E., Thirstrup, K., Holst, B. & Schwartz, T. W. Conversion of agonist site to metal-ion chelator site in the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA96, 12322–12327 (1999) ADSCASPubMedPubMed Central Google Scholar
Schwartz, T. W. et al. Molecular mechanism of 7TM receptor activation — a global toggle switch model. Annu. Rev. Pharmacol. Toxicol.46, 481–519 (2006) CASPubMed Google Scholar
Warne, T., Chirnside, J. & Schertler, G. F. Expression and purification of truncated, non-glycosylated turkey beta-adrenergic receptors for crystallization. Biochim. Biophys. Acta1610, 133–140 (2003) CASPubMed Google Scholar
Riekel, C., Burghammer, M. & Schertler, G. Protein crystallography microdiffraction. Curr. Opin. Struct. Biol.15, 556–562 (2005) CASPubMed Google Scholar
Standfuss, J. et al. Crystal structure of a thermally stable rhodopsin mutant. J. Mol. Biol.372, 1179–1188 (2007) CASPubMedPubMed Central Google Scholar
Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D62, 72–82 (2006) PubMed Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst.40, 658–674 (2007) CAS Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002) Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991) PubMed Google Scholar
Kabsch, W. & Sander, G. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers22, 2577–2637 (1983) CASPubMed Google Scholar
Baker, J. G., Hall, I. P. & Hill, S. J. Agonist actions of “beta-blockers” provide evidence for two agonist activation sites or conformations of the human β1-adrenoceptor. Mol. Pharmacol.63, 1312–1321 (2003) CASPubMed Google Scholar
Donaldson, J., Brown, A. M. & Hill, S. J. Influence of rolipram on the cyclic 3′,5′-adenosine monophosphate response to histamine and adenosine in slices of guinea-pig cerebral cortex. Biochem. Pharmacol.37, 715–723 (1988) CASPubMed Google Scholar
Baker, J. G., Hall, I. P. & Hill, S. J. Agonist and inverse agonist actions of beta-blockers at the human β2-adrenoceptor provide evidence for agonist-directed signaling. Mol. Pharmacol.64, 1357–1369 (2003) CASPubMed Google Scholar