Simchen, G., Pinon, R. & Salts, Y. Sporulation in Saccharomyces cerevisiae: premeiotic DNA synthesis, readiness and commitment. Exp. Cell Res.75, 207–218 (1972) CASPubMed Google Scholar
Nachman, I., Regev, A. & Ramanathan, S. Dissecting timing variability in yeast meiosis. Cell131, 544–556 (2007) CASPubMed Google Scholar
Shenhar, G. & Kassir, Y. A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae . Mol. Cell. Biol.21, 1603–1612 (2001) CASPubMedPubMed Central Google Scholar
Ferrell, J. E. & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science280, 895–898 (1998) ADSCASPubMed Google Scholar
Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature426, 460–465 (2003) ADSCASPubMed Google Scholar
Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA100, 975–980 (2003) ADSCASPubMed Google Scholar
Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol.5, 346–351 (2003) CASPubMed Google Scholar
Hartwell, L. H., Culotti, J., Pringle, J. R. & Reid, B. J. Genetic control of the cell division cycle in yeast. Science183, 46–51 (1974) ADSCASPubMed Google Scholar
Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae . Exp. Cell Res.105, 79–98 (1977) CASPubMed Google Scholar
Lord, P. G. & Wheals, A. E. Variability in individual cell cycles of Saccharomyces cerevisiae . J. Cell Sci.50, 361–376 (1981) CASPubMed Google Scholar
Di Talia, S., Skotheim, J. M., Bean, J. M., Siggia, E. D. & Cross, F. R. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature448, 947–951 (2007) ADSCASPubMed Google Scholar
Jorgensen, P. & Tyers, M. How cells coordinate growth and division. Curr. Biol.14, R1014–R1027 (2004) CASPubMed Google Scholar
Tyers, M., Tokiwa, G. & Futcher, B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J.12, 1955–1968 (1993) CASPubMedPubMed Central Google Scholar
Dirick, L., Bohm, T. & Nasmyth, K. Roles and regulation of Cln–Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae . EMBO J.14, 4803–4813 (1995) CASPubMedPubMed Central Google Scholar
Stuart, D. & Wittenberg, C. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev.9, 2780–2794 (1995) CASPubMed Google Scholar
Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell9, 3273–3297 (1998) CASPubMedPubMed Central Google Scholar
Kato, M., Hata, N., Banerjee, N., Futcher, B. & Zhang, M. Q. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol.5, R56 (2004) PubMedPubMed Central Google Scholar
de Bruin, R. A., McDonald, W. H., Kalashnikova, T. I., Yates, J. & Wittenberg, C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell117, 887–898 (2004) CASPubMed Google Scholar
Costanzo, M. et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell117, 899–913 (2004) CASPubMed Google Scholar
Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell74, 993–1007 (1993) CASPubMed Google Scholar
de Bruin, R. A. et al. Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol. Cell23, 483–496 (2006) CASPubMed Google Scholar
Cross, F. R. & Tinkelenberg, A. H. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell65, 875–883 (1991) CASPubMed Google Scholar
Dirick, L. & Nasmyth, K. Positive feedback in the activation of G1 cyclins in yeast. Nature351, 754–757 (1991) ADSCASPubMed Google Scholar
Bean, J. M., Siggia, E. D. & Cross, F. R. Coherence and timing of cell cycle Start examined at single-cell resolution. Mol. Cell21, 3–14 (2006) CASPubMed Google Scholar
Mateus, C. & Avery, S. V. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast16, 1313–1323 (2000) CASPubMed Google Scholar
Samoilov, M. S., Price, G. & Arkin, A. P. From fluctuations to phenotypes: the physiology of noise. Sci. STKE2006, re17 (2006) PubMed Google Scholar
Iyer, V. R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature409, 533–538 (2001) ADSCASPubMed Google Scholar
Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell106, 697–708 (2001) CASPubMed Google Scholar
Koch, C., Schleiffer, A., Ammerer, G. & Nasmyth, K. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at Start, whereas Clb/Cdc28 kinases displace it from the promoter in G2 . Genes Dev.10, 129–141 (1996) CASPubMed Google Scholar
Moffat, J. & Andrews, B. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Nature Cell Biol.6, 59–66 (2004) CASPubMed Google Scholar
Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science282, 1721–1724 (1998) ADSCASPubMed Google Scholar
Wijnen, H., Landman, A. & Futcher, B. The G1 cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol. Cell. Biol.22, 4402–4418 (2002) CASPubMedPubMed Central Google Scholar
Edgington, N. P. & Futcher, B. Relationship between the function and the location of G1 cyclins in S. cerevisiae . J. Cell Sci.114, 4599–4611 (2001) CASPubMed Google Scholar
Miller, M. E. & Cross, F. R. Distinct subcellular localization patterns contribute to functional specificity of the Cln2 and Cln3 cyclins of Saccharomyces cerevisiae . Mol. Cell. Biol.20, 542–555 (2000) CASPubMedPubMed Central Google Scholar
Koch, C., Moll, T., Neuberg, M., Ahorn, H. & Nasmyth, K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science261, 1551–1557 (1993) ADSCASPubMed Google Scholar
Bean, J. M., Siggia, E. D. & Cross, F. R. High functional overlap between MBF and SBF in the G1/S transcriptional program in Saccharomyces cerevisiae . Genetics171, 49–61 (2005) CASPubMedPubMed Central Google Scholar
McCusker, D. et al. Cdk1 coordinates cell-surface growth with the cell cycle. Nature Cell Biol.9, 506–515 (2007) CASPubMed Google Scholar
Polymenis, M. & Schmidt, E. V. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev.11, 2522–2531 (1997) CASPubMedPubMed Central Google Scholar
Wang, H., Gari, E., Verges, E., Gallego, C. & Aldea, M. Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin–Cdk complex to late G1. EMBO J.23, 180–190 (2004) CASPubMed Google Scholar
Schneider, B. L., Yang, Q. H. & Futcher, A. B. Linkage of replication to Start by the Cdk inhibitor Sic1. Science272, 560–562 (1996) ADSCASPubMed Google Scholar
Lanker, S., Valdivieso, M. H. & Wittenberg, C. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science271, 1597–1601 (1996) ADSCASPubMed Google Scholar
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol.22, 1567–1572 (2004) CAS Google Scholar