Positive feedback of G1 cyclins ensures coherent cell cycle entry (original) (raw)

References

  1. Simchen, G., Pinon, R. & Salts, Y. Sporulation in Saccharomyces cerevisiae: premeiotic DNA synthesis, readiness and commitment. Exp. Cell Res. 75, 207–218 (1972)
    CAS PubMed Google Scholar
  2. Nachman, I., Regev, A. & Ramanathan, S. Dissecting timing variability in yeast meiosis. Cell 131, 544–556 (2007)
    CAS PubMed Google Scholar
  3. Shenhar, G. & Kassir, Y. A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae . Mol. Cell. Biol. 21, 1603–1612 (2001)
    CAS PubMed PubMed Central Google Scholar
  4. Ferrell, J. E. & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280, 895–898 (1998)
    ADS CAS PubMed Google Scholar
  5. Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426, 460–465 (2003)
    ADS CAS PubMed Google Scholar
  6. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA 100, 975–980 (2003)
    ADS CAS PubMed Google Scholar
  7. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003)
    CAS PubMed Google Scholar
  8. Hartwell, L. H., Culotti, J., Pringle, J. R. & Reid, B. J. Genetic control of the cell division cycle in yeast. Science 183, 46–51 (1974)
    ADS CAS PubMed Google Scholar
  9. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae . Exp. Cell Res. 105, 79–98 (1977)
    CAS PubMed Google Scholar
  10. Lord, P. G. & Wheals, A. E. Variability in individual cell cycles of Saccharomyces cerevisiae . J. Cell Sci. 50, 361–376 (1981)
    CAS PubMed Google Scholar
  11. Di Talia, S., Skotheim, J. M., Bean, J. M., Siggia, E. D. & Cross, F. R. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951 (2007)
    ADS CAS PubMed Google Scholar
  12. Jorgensen, P. & Tyers, M. How cells coordinate growth and division. Curr. Biol. 14, R1014–R1027 (2004)
    CAS PubMed Google Scholar
  13. Tyers, M., Tokiwa, G. & Futcher, B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12, 1955–1968 (1993)
    CAS PubMed PubMed Central Google Scholar
  14. Dirick, L., Bohm, T. & Nasmyth, K. Roles and regulation of Cln–Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae . EMBO J. 14, 4803–4813 (1995)
    CAS PubMed PubMed Central Google Scholar
  15. Stuart, D. & Wittenberg, C. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev. 9, 2780–2794 (1995)
    CAS PubMed Google Scholar
  16. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)
    CAS PubMed PubMed Central Google Scholar
  17. Kato, M., Hata, N., Banerjee, N., Futcher, B. & Zhang, M. Q. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 5, R56 (2004)
    PubMed PubMed Central Google Scholar
  18. de Bruin, R. A., McDonald, W. H., Kalashnikova, T. I., Yates, J. & Wittenberg, C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117, 887–898 (2004)
    CAS PubMed Google Scholar
  19. Costanzo, M. et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117, 899–913 (2004)
    CAS PubMed Google Scholar
  20. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993)
    CAS PubMed Google Scholar
  21. de Bruin, R. A. et al. Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol. Cell 23, 483–496 (2006)
    CAS PubMed Google Scholar
  22. Cross, F. R. & Tinkelenberg, A. H. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65, 875–883 (1991)
    CAS PubMed Google Scholar
  23. Dirick, L. & Nasmyth, K. Positive feedback in the activation of G1 cyclins in yeast. Nature 351, 754–757 (1991)
    ADS CAS PubMed Google Scholar
  24. Bean, J. M., Siggia, E. D. & Cross, F. R. Coherence and timing of cell cycle Start examined at single-cell resolution. Mol. Cell 21, 3–14 (2006)
    CAS PubMed Google Scholar
  25. Mateus, C. & Avery, S. V. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16, 1313–1323 (2000)
    CAS PubMed Google Scholar
  26. Samoilov, M. S., Price, G. & Arkin, A. P. From fluctuations to phenotypes: the physiology of noise. Sci. STKE 2006, re17 (2006)
    PubMed Google Scholar
  27. Iyer, V. R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001)
    ADS CAS PubMed Google Scholar
  28. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)
    ADS CAS PubMed PubMed Central Google Scholar
  29. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)
    CAS PubMed Google Scholar
  30. Koch, C., Schleiffer, A., Ammerer, G. & Nasmyth, K. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at Start, whereas Clb/Cdc28 kinases displace it from the promoter in G2 . Genes Dev. 10, 129–141 (1996)
    CAS PubMed Google Scholar
  31. Moffat, J. & Andrews, B. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Nature Cell Biol. 6, 59–66 (2004)
    CAS PubMed Google Scholar
  32. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998)
    ADS CAS PubMed Google Scholar
  33. Wijnen, H., Landman, A. & Futcher, B. The G1 cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol. Cell. Biol. 22, 4402–4418 (2002)
    CAS PubMed PubMed Central Google Scholar
  34. Edgington, N. P. & Futcher, B. Relationship between the function and the location of G1 cyclins in S. cerevisiae . J. Cell Sci. 114, 4599–4611 (2001)
    CAS PubMed Google Scholar
  35. Miller, M. E. & Cross, F. R. Distinct subcellular localization patterns contribute to functional specificity of the Cln2 and Cln3 cyclins of Saccharomyces cerevisiae . Mol. Cell. Biol. 20, 542–555 (2000)
    CAS PubMed PubMed Central Google Scholar
  36. Koch, C., Moll, T., Neuberg, M., Ahorn, H. & Nasmyth, K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261, 1551–1557 (1993)
    ADS CAS PubMed Google Scholar
  37. Bean, J. M., Siggia, E. D. & Cross, F. R. High functional overlap between MBF and SBF in the G1/S transcriptional program in Saccharomyces cerevisiae . Genetics 171, 49–61 (2005)
    CAS PubMed PubMed Central Google Scholar
  38. McCusker, D. et al. Cdk1 coordinates cell-surface growth with the cell cycle. Nature Cell Biol. 9, 506–515 (2007)
    CAS PubMed Google Scholar
  39. Polymenis, M. & Schmidt, E. V. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev. 11, 2522–2531 (1997)
    CAS PubMed PubMed Central Google Scholar
  40. Wang, H., Gari, E., Verges, E., Gallego, C. & Aldea, M. Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin–Cdk complex to late G1. EMBO J. 23, 180–190 (2004)
    CAS PubMed Google Scholar
  41. Schneider, B. L., Yang, Q. H. & Futcher, A. B. Linkage of replication to Start by the Cdk inhibitor Sic1. Science 272, 560–562 (1996)
    ADS CAS PubMed Google Scholar
  42. Lanker, S., Valdivieso, M. H. & Wittenberg, C. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271, 1597–1601 (1996)
    ADS CAS PubMed Google Scholar
  43. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004)
    CAS Google Scholar

Download references