The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix (original) (raw)
Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science317, 1760–1764 (2007) ArticleADSCAS Google Scholar
Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature450, 908–912 (2007) ArticleADSCAS Google Scholar
Cheng, X. & Blumenthal, R. M. Mammalian DNA methyltransferases: a structural perspective. Structure16, 341–350 (2008) Article Google Scholar
Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74, 481–514 (2005) ArticleCAS Google Scholar
Chen, T. & Li, E. Establishment and maintenance of DNA methylation patterns in mammals. Curr. Top. Microbiol. Immunol.301, 179–201 (2006) CASPubMed Google Scholar
Mortusewicz, O., Schermelleh, L., Walter, J., Cardoso, M. C. & Leonhardt, H. Recruitment of DNA methyltransferase I to DNA repair sites. Proc. Natl Acad. Sci. USA102, 8905–8909 (2005) ArticleADSCAS Google Scholar
Jeltsch, A. Molecular enzymology of mammalian DNA methyltransferases. Curr. Top. Microbiol. Immunol.301, 203–225 (2006) CASPubMed Google Scholar
Unoki, M., Bronner, C. & Mousli, M. A concern regarding the current confusion with the human homolog of mouse Np95, ICBP90/UHRF1. Radiat. Res.169, 240–244 (2008) ArticleADSCAS Google Scholar
Achour, M. et al. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene27, 2187–2197 (2008) ArticleCAS Google Scholar
Ooi, S. K. & Bestor, T. H. Cytosine methylation: remaining faithful. Curr. Biol.18, R174–R176 (2008) ArticleCAS Google Scholar
Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. & Shirakawa, M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 10.1038/nature07249 (this issue).
Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A. & Cheng, X. Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J. Mol. Biol.358, 559–570 (2006) ArticleCAS Google Scholar
Horton, J. R., Liebert, K., Hattman, S., Jeltsch, A. & Cheng, X. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Cell121, 349–361 (2005) ArticleCAS Google Scholar
Yang, Z. et al. Structure of the bacteriophage T4 DNA adenine methyltransferase. Nature Struct. Biol.10, 849–855 (2003) ArticleCAS Google Scholar
Klimasauskas, S. & Roberts, R. J. M. HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res.23, 1388–1395 (1995) ArticleCAS Google Scholar
Woo, H. R., Pontes, O., Pikaard, C. S. & Richards, E. J. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev.21, 267–277 (2007) ArticleCAS Google Scholar
Johnson, L. M. et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol.17, 379–384 (2007) ArticleCAS Google Scholar
Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J.21, 6842–6852 (2002) ArticleCAS Google Scholar
Klimasauskas, S., Kumar, S., Roberts, R. J. & Cheng, X. HhaI methyltransferase flips its target base out of the DNA helix. Cell76, 357–369 (1994) ArticleCAS Google Scholar
Cheng, X. & Roberts, R. J. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res.29, 3784–3795 (2001) ArticleCAS Google Scholar
Yang, C. G. et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature452, 961–965 (2008) ArticleADSCAS Google Scholar
Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature449, 570–575 (2007) ArticleADSCAS Google Scholar
Parker, J. B. et al. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature449, 433–437 (2007) ArticleADSCAS Google Scholar
Lee, T. T., Agarwalla, S. & Stroud, R. M. A unique RNA fold in the RumA–RNA–cofactor ternary complex contributes to substrate selectivity and enzymatic function. Cell120, 599–611 (2005) ArticleCAS Google Scholar
Werner, R. M. et al. Stressing-out DNA? The contribution of serine–phosphodiester interactions in catalysis by uracil DNA glycosylase. Biochemistry39, 12585–12594 (2000) ArticleCAS Google Scholar
Cheng, X. & Blumenthal, R. M. Finding a basis for flipping bases. Structure4, 639–645 (1996) ArticleCAS Google Scholar
Ohki, I. et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell105, 487–497 (2001) ArticleCAS Google Scholar
Ho, K. L. et al. MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol. Cell29, 525–531 (2008) ArticleCAS Google Scholar
Mousli, M. et al. ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells. Br. J. Cancer89, 120–127 (2003) ArticleCAS Google Scholar
Muto, M. et al. Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J. Biol. Chem.277, 34549–34555 (2002) ArticleCAS Google Scholar
Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature448, 718–722 (2007) ArticleADSCAS Google Scholar
Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif.41, 207–234 (2005) ArticleCAS Google Scholar
Malakhov, M. P. et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genomics5, 75–86 (2004) ArticleCAS Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. Multiparametric scaling of diffraction intensities. Acta Crystallogr. A59, 228–234 (2003) Article Google Scholar
Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D60, 432–438 (2004) Article Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991) Article Google Scholar
Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticleCAS Google Scholar