Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma (original) (raw)

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Microarray data have been submitted to the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) public database. The accession numbers for gene expression profiles of neuroblastoma samples and SNP data for case NB-99 displayed in Fig. 1c are GSE12460 and GSE12461, respectively.

References

  1. Maris, J. M., Hogarty, M. D., Bagatell, R. & Cohn, S. L. Neuroblastoma. Lancet 369, 2106–2120 (2007)
    Article CAS Google Scholar
  2. Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nature Rev. Cancer 3, 203–216 (2003)
    Article CAS Google Scholar
  3. Tonini, G. P., Longo, L., Coco, S. & Perri, P. Familial neuroblastoma: a complex heritable disease. Cancer Lett. 197, 41–45 (2003)
    Article CAS Google Scholar
  4. Trochet, D. et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet. 74, 761–764 (2004)
    Article CAS Google Scholar
  5. Chiarle, R., Voena, C., Ambrogio, C., Piva, R. & Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nature Rev. Cancer 8, 11–23 (2008)
    Article CAS Google Scholar
  6. Galkin, A. V. et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc. Natl Acad. Sci. USA 104, 270–275 (2007)
    Article ADS CAS Google Scholar
  7. Li, R. & Morris, S. W. Development of anaplastic lymphoma (ALK) small-molecule inhibitors for cancer therapy. Med. Res. Rev. 28, 372–412 (2008)
    Article CAS Google Scholar
  8. Fix, A. et al. Characterization of amplicons in neuroblastoma. High-resolution mapping using DNA microarrays, relationship with outcome, and identification of overexpressed genes. Genes Chromosom. Cancer 47, 819–834 (2008)
    Article CAS Google Scholar
  9. Schwab, M. et al. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 308, 288–291 (1984)
    Article ADS CAS Google Scholar
  10. Lamant, L. et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am. J. Pathol. 156, 1711–1721 (2000)
    Article CAS Google Scholar
  11. Osajima-Hakomori, Y. et al. Biological role of anaplastic lymphoma kinase in neuroblastoma. Am. J. Pathol. 167, 213–222 (2005)
    Article CAS Google Scholar
  12. Miyake, I. et al. Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene 21, 5823–5834 (2002)
    Article CAS Google Scholar
  13. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001)
    Article ADS CAS Google Scholar
  14. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007)
    Article CAS Google Scholar
  15. Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007)
    Article CAS Google Scholar
  16. McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008)
    Article CAS Google Scholar
  17. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263, 1281–1284 (1994)
    Article ADS CAS Google Scholar
  18. Griffin, C. A. et al. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 59, 2276–2280 (1999)
    Google Scholar
  19. Soda, M. et al. Identification of the transforming _EML4_-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007)
    Article ADS CAS Google Scholar
  20. Chiarle, R. et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919–1927 (2003)
    Article CAS Google Scholar
  21. Fujimoto, J. et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc. Natl Acad. Sci. USA 93, 4181–4186 (1996)
    Article ADS CAS Google Scholar
  22. Hubbard, S. R. Juxtamembrane autoinhibition in receptor tyrosine kinase. Nature Rev. Mol. Cell Biol. 5, 464–471 (2004)
    Article CAS Google Scholar
  23. Renneville, A. et al. Cooperating gene mutations in acute myeloid leukaemia: a review of the literature. Leukemia 22, 915–931 (2008)
    Article CAS Google Scholar
  24. Gilliland, G. & Griffin, G. The roles of FLT3 in hematopoiesis and leukaemia. Blood 100, 1532–1542 (2002)
    Article CAS Google Scholar
  25. Fröhling, S. et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 12, 501–513 (2007)
    Article Google Scholar
  26. Chiarle, R. et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nature. Med. 14, 676–680 (2008)
    Article CAS Google Scholar
  27. Vincent-Salomon, A., Raynal, V., Lucchesi, C., Gruel, N. & Delattre, O. ESR1 gene amplification in breast cancer: a common phenomenon? Nature Genet. 40, 809 (2008)
    Article CAS Google Scholar

Download references

Acknowledgements

We are grateful to F. Moreau-Gachelin, I. Gallais, D. Surdez, F. Tirode, A. Fix, F. Bourdeaut, A. Almeida, C. Lucchesi, S. Roman Roman, B. Bressac, J. Bénard and G. Vassal for their critical help. We thank C. Decraene, D. Gentien and B. Albaud from the translational department of Institut Curie for profiling the paediatric tumours, and P. Rosa and E. Barillot for the development of bioinformatic tools. We thank M. Lathrop and the Centre National de Génotypage for the Affymetrix 100K SNP analysis and A. Chompret for collecting families. This work was supported by grants from the Agence Nationale pour la Recherche, the Institut National du Cancer, the Ligue Nationale contre le Cancer (Equipe labellisée and CIT project), the APAESIC (Association des Parents et des Amis des Enfants Soignés à l’Institut Curie), the Association Hubert Gouin, les amis de Claire, Les Bagouz à Manon and Enfance et Santé. A.P. and V.C. are supported by the Comité de l'Ain of the Ligue Nationale contre le Cancer.

Author Contributions I.J.-L., D.L., A.R., L.P., V.C. and V.R. generated the data; I.J.-L., G.P., A.P., J.M., J.A., S.L. and O.D. made the study design and follow-up; L.B., V.C., A.P., G.S., D.V.-C., T.F., S.L. and J.A. contributed biological materials that were used in this study.

Author information

Authors and Affiliations

  1. Institut Curie, Centre de Recherche,,
    Isabelle Janoueix-Lerosey, Delphine Lequin, Virginie Raynal, Gudrun Schleiermacher & Olivier Delattre
  2. Inserm, U830, 26 rue d’Ulm, Paris F-75248, France ,
    Isabelle Janoueix-Lerosey, Delphine Lequin, Virginie Raynal, Gudrun Schleiermacher & Olivier Delattre
  3. Département de pédiatrie, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France,
    Laurence Brugières & Dominique Valteau-Couanet
  4. Institut Curie, Unité de Génétique Somatique, Paris F-75248, France
    Agnès Ribeiro, Gaëlle Pierron & Olivier Delattre
  5. Département de Génétique, Université Paris Descartes, Faculté de Médecine et INSERM-U781, Hôpital Necker-Enfants Malades, 149, rue de Sèvres, 75743 Paris Cedex 15, France,
    Loïc de Pontual, Stanislas Lyonnet & Jeanne Amiel
  6. Centre Léon Bérard, FNCLCC, Laboratoire de Recherche Translationnelle,
    Valérie Combaret & Alain Puisieux
  7. Inserm, U590,,
    Alain Puisieux
  8. Université de Lyon, Lyon1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon F-69008, France ,
    Alain Puisieux
  9. Département de Pédiatrie, Institut Curie, Paris F-75248, France
    Gudrun Schleiermacher & Jean Michon
  10. Service de Génétique, CHU de Rouen et Inserm U614, Faculté de Médecine et de Pharmacie, 76183 Rouen Cedex, France
    Thierry Frebourg

Authors

  1. Isabelle Janoueix-Lerosey
    You can also search for this author inPubMed Google Scholar
  2. Delphine Lequin
    You can also search for this author inPubMed Google Scholar
  3. Laurence Brugières
    You can also search for this author inPubMed Google Scholar
  4. Agnès Ribeiro
    You can also search for this author inPubMed Google Scholar
  5. Loïc de Pontual
    You can also search for this author inPubMed Google Scholar
  6. Valérie Combaret
    You can also search for this author inPubMed Google Scholar
  7. Virginie Raynal
    You can also search for this author inPubMed Google Scholar
  8. Alain Puisieux
    You can also search for this author inPubMed Google Scholar
  9. Gudrun Schleiermacher
    You can also search for this author inPubMed Google Scholar
  10. Gaëlle Pierron
    You can also search for this author inPubMed Google Scholar
  11. Dominique Valteau-Couanet
    You can also search for this author inPubMed Google Scholar
  12. Thierry Frebourg
    You can also search for this author inPubMed Google Scholar
  13. Jean Michon
    You can also search for this author inPubMed Google Scholar
  14. Stanislas Lyonnet
    You can also search for this author inPubMed Google Scholar
  15. Jeanne Amiel
    You can also search for this author inPubMed Google Scholar
  16. Olivier Delattre
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toOlivier Delattre.

Supplementary information

PowerPoint slides

Rights and permissions

About this article

Cite this article

Janoueix-Lerosey, I., Lequin, D., Brugières, L. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma.Nature 455, 967–970 (2008). https://doi.org/10.1038/nature07398

Download citation