Quality control by the ribosome following peptide bond formation (original) (raw)

References

  1. Edelmann, P. & Gallant, J. Mistranslation in E. coli . Cell 10, 131–137 (1977)
    Article CAS Google Scholar
  2. Bouadloun, F., Donner, D. & Kurland, C. G. Codon-specific missense errors in vivo . EMBO J. 2, 1351–1356 (1983)
    Article CAS Google Scholar
  3. Gromadski, K. B. & Rodnina, M. V. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191–200 (2004)
    Article CAS Google Scholar
  4. Guth, E. C. & Francklyn, C. S. Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase. Mol. Cell 25, 531–542 (2007)
    Article CAS Google Scholar
  5. Schmidt, E. & Schimmel, P. Mutational isolation of a sieve for editing in a transfer RNA synthetase. Science 264, 265–267 (1994)
    Article ADS CAS Google Scholar
  6. Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974)
    Article ADS CAS Google Scholar
  7. Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975)
    Article CAS Google Scholar
  8. Soll, D. The accuracy of aminoacylation—ensuring the fidelity of the genetic code. Experientia 46, 1089–1096 (1990)
    Article CAS Google Scholar
  9. Szaflarski, W. et al. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J. Mol. Biol. 380, 193–205 (2008)
    Article CAS Google Scholar
  10. Jelenc, P. C. & Kurland, C. G. Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc. Natl Acad. Sci. USA 76, 3174–3178 (1979)
    Article ADS CAS Google Scholar
  11. Brutlag, D. & Kornberg, A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3′ leads to 5′ exonuclease activity in deoxyribonucleic acid polymerases. J. Biol. Chem. 247, 241–248 (1972)
    CAS PubMed Google Scholar
  12. Precup, J. & Parker, J. Missense misreading of asparagine codons as a function of codon identity and context. J. Biol. Chem. 262, 11351–11355 (1987)
    CAS PubMed Google Scholar
  13. Brunelle, J. L., Shaw, J. J., Youngman, E. M. & Green, R. Peptide release on the ribosome depends critically on the 2' OH of the peptidyl-tRNA substrate. RNA 14, 1526–1531 (2008)
    Article CAS Google Scholar
  14. Youngman, E. M., He, S. L., Nikstad, L. J. & Green, R. Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol. Cell 28, 533–543 (2007)
    Article CAS Google Scholar
  15. Dincbas-Renqvist, V. et al. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 19, 6900–6907 (2000)
    Article CAS Google Scholar
  16. Freistroffer, D. V., Kwiatkowski, M., Buckingham, R. H. & Ehrenberg, M. The accuracy of codon recognition by polypeptide release factors. Proc. Natl Acad. Sci. USA 97, 2046–2051 (2000)
    Article ADS CAS Google Scholar
  17. Baranov, P. V., Gesteland, R. F. & Atkins, J. F. Recoding: translational bifurcations in gene expression. Gene 286, 187–201 (2002)
    Article CAS Google Scholar
  18. Hartz, D., McPheeters, D. S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425 (1988)
    Article CAS Google Scholar
  19. Brown, C. M., McCaughan, K. K. & Tate, W. P. Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. Nucleic Acids Res. 21, 2109–2115 (1993)
    Article CAS Google Scholar
  20. Katunin, V. I., Muth, G. W., Strobel, S. A., Wintermeyer, W. & Rodnina, M. V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346 (2002)
    Article CAS Google Scholar
  21. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004)
    Article CAS Google Scholar
  22. Freistroffer, D. V., Pavlov, M. Y., MacDougall, J., Buckingham, R. H. & Ehrenberg, M. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16, 4126–4133 (1997)
    Article CAS Google Scholar
  23. Marquez, V., Wilson, D. N., Tate, W. P., Triana-Alonso, F. & Nierhaus, K. H. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118, 45–55 (2004)
    Article CAS Google Scholar
  24. Geigenmuller, U. & Nierhaus, K. H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 9, 4527–4533 (1990)
    Article CAS Google Scholar
  25. Sundararajan, A., Michaud, W. A., Qian, Q., Stahl, G. & Farabaugh, P. J. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol. Cell 4, 1005–1015 (1999)
    Article CAS Google Scholar
  26. Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996)
    Article CAS Google Scholar
  27. Manley, J. L. Synthesis and degradation of termination and premature-termination fragments of β-galactosidase in vitro and in vivo . J. Mol. Biol. 125, 407–432 (1978)
    Article CAS Google Scholar
  28. Dong, H. & Kurland, C. G. Ribosome mutants with altered accuracy translate with reduced processivity. J. Mol. Biol. 248, 551–561 (1995)
    Article CAS Google Scholar
  29. Craigen, W. J. & Caskey, C. T. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322, 273–275 (1986)
    Article ADS CAS Google Scholar
  30. Jorgensen, F., Adamski, F. M., Tate, W. P. & Kurland, C. G. Release factor-dependent false stops are infrequent in Escherichia coli . J. Mol. Biol. 230, 41–50 (1993)
    Article CAS Google Scholar
  31. Pape, T., Wintermeyer, W. & Rodnina, M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999)
    Article CAS Google Scholar
  32. Bartetzko, A. & Nierhaus, K. H. Mg2+/NH4+/polyamine system for polyuridine-dependent polyphenylalanine synthesis with near in vivo characteristics. Methods Enzymol. 164, 650–658 (1988)
    Article CAS Google Scholar
  33. Shaw, J. J. & Green, R. Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol. Cell 28, 458–467 (2007)
    Article CAS Google Scholar
  34. Brunelle, J. L., Youngman, E. M., Sharma, D. & Green, R. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12, 33–39 (2006)
    Article CAS Google Scholar
  35. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nature Biotechnol. 19, 751–755 (2001)
    Article CAS Google Scholar
  36. Blanchard, S. C., Kim, H. D., Gonzalez, R. L., Puglisi, J. D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl Acad. Sci. USA 101, 12893–12898 (2004)
    Article ADS CAS Google Scholar
  37. Zaher, H. S. & Unrau, P. J. T7 RNA polymerase mediates fast promoter-independent extension of unstable nucleic acid complexes. Biochemistry 43, 7873–7880 (2004)
    Article CAS Google Scholar
  38. Moazed, D. & Noller, H. F. Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA. Proc. Natl Acad. Sci. USA 88, 3725–3728 (1991)
    Article ADS CAS Google Scholar
  39. Dorner, S., Brunelle, J. L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nature Struct. Mol. Biol. 13, 234–241 (2006)
    Article CAS Google Scholar

Download references