Distinctive chromatin in human sperm packages genes for embryo development (original) (raw)
Ward, W. S. & Coffey, D. S. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod.44, 569–574 (1991) ArticleCAS Google Scholar
Wykes, S. M. & Krawetz, S. A. The structural organization of sperm chromatin. J. Biol. Chem.278, 29471–29477 (2003) ArticleCAS Google Scholar
Balhorn, R., Brewer, L. & Corzett, M. DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. Mol. Reprod. Dev.56, 230–234 (2000) ArticleCAS Google Scholar
Gatewood, J. M., Cook, G. R., Balhorn, R., Schmid, C. W. & Bradbury, E. M. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J. Biol. Chem.265, 20662–20666 (1990) CASPubMed Google Scholar
Kimmins, S. & Sassone-Corsi, P. Chromatin remodelling and epigenetic features of germ cells. Nature434, 583–589 (2005) ArticleADSCAS Google Scholar
Nix, D. A., Courdy, S. J. & Boucher, K. M. Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics9, 523 (2008) Article Google Scholar
Reik, W., Santos, F. & Dean, W. Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology59, 21–32 (2003) ArticleCAS Google Scholar
Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241, 172–182 (2002) ArticleCAS Google Scholar
Rangasamy, D., Berven, L., Ridgway, P. & Tremethick, D. J. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J.22, 1599–1607 (2003) ArticleCAS Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006) ArticleCAS Google Scholar
Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA99, 8695–8700 (2002) ArticleADSCAS Google Scholar
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005) ArticleCAS Google Scholar
Muller, J. & Kassis, J. A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila . Curr. Opin. Genet. Dev.16, 476–484 (2006) Article Google Scholar
Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster . Nature Genet.38, 700–705 (2006) ArticleCAS Google Scholar
Tanay, A., O’Donnell, A. H., Damelin, M. & Bestor, T. H. Hyperconserved CpG domains underlie Polycomb-binding sites. Proc. Natl Acad. Sci. USA104, 5521–5526 (2007) ArticleADSCAS Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002) ArticleADSCAS Google Scholar
Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell125, 301–313 (2006) ArticleCAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007) ArticleCAS Google Scholar
Kopp, J. L., Ormsbee, B. D., Desler, M. & Rizzino, A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells26, 903–911 (2008) ArticleCAS Google Scholar
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007) ArticleADSCAS Google Scholar
Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell30, 755–766 (2008) ArticleCAS Google Scholar
Illingworth, R. et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol.6, e22 (2008) Article Google Scholar
Down, T. A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnol.26, 779–785 (2008) ArticleCAS Google Scholar
Farthing, C. R. et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet.4, e1000116 (2008) Article Google Scholar
Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell129, 1401–1414 (2007) ArticleCAS Google Scholar
Glazov, E. A., McWilliam, S., Barris, W. C. & Dalrymple, B. P. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol. Biol. Evol.25, 939–948 (2008) ArticleCAS Google Scholar
Takada, S. et al. Delta-like and Gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr. Biol.10, 1135–1138 (2000) ArticleCAS Google Scholar
da Rocha, S. T., Edwards, C. A., Ito, M., Ogata, T. & Ferguson-Smith, A. C. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet.24, 306–316 (2008) Article Google Scholar
Li, S. S., Liu, Y. H., Tseng, C. N. & Singh, S. Analysis of gene expression in single human oocytes and preimplantation embryos. Biochem. Biophys. Res. Commun.340, 48–53 (2006) ArticleCAS Google Scholar
Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet.39, 457–466 (2007) ArticleCAS Google Scholar
Fouse, S. D. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell2, 160–169 (2008) ArticleCAS Google Scholar
Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature439, 871–874 (2006) ArticleADSCAS Google Scholar
Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet.39, 232–236 (2007) ArticleCAS Google Scholar
Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature448, 714–717 (2007) ArticleADSCAS Google Scholar
Gordon, M. et al. Genome-wide dynamics of SAPHIRE, an essential complex for gene activation and chromatin boundaries. Mol. Cell. Biol.27, 4058–4069 (2007) ArticleCAS Google Scholar
Zalenskaya, I. A., Bradbury, E. M. & Zalensky, A. O. Chromatin structure of telomere domain in human sperm. Biochem. Biophys. Res. Commun.279, 213–218 (2000) ArticleCAS Google Scholar
Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics19, 185–193 (2003) ArticleCAS Google Scholar
Dudoit, S., Gilbert, H. N. & van der Laan, M. J. Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: focus on the false discovery rate and simulation study. Biom. J.50, 716–744 (2008) ArticleMathSciNet Google Scholar
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA100, 9440–9445 (2003) ArticleADSMathSciNetCAS Google Scholar