Structures of the tRNA export factor in the nuclear and cytosolic states (original) (raw)

References

  1. Kohler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nature Rev. Mol. Cell Biol. 8, 761–773 (2007)
    Google Scholar
  2. Rodriguez, M. S., Dargemont, C. & Stutz, F. Nuclear export of RNA. Biol. Cell 96, 639–655 (2004)
    CAS PubMed Google Scholar
  3. Elad, N., Maimon, T., Frenkiel-Krispin, D., Lim, R. Y. & Medalia, O. Structural analysis of the nuclear pore complex by integrated approaches. Curr. Opin. Struct. Biol. 19, 226–232 (2009)
    CAS PubMed Google Scholar
  4. Lim, R. Y., Aebi, U. & Fahrenkrog, B. Towards reconciling structure and function in the nuclear pore complex. Histochem. Cell Biol. 129, 105–116 (2008)
    CAS PubMed PubMed Central Google Scholar
  5. Peters, R. Translocation through the nuclear pore: Kaps pave the way. Bioessays 31, 466–477 (2009)
    CAS PubMed Google Scholar
  6. Zasloff, M. tRNA transport from the nucleus in a eukaryotic cell: carrier-mediated translocation process. Proc. Natl Acad. Sci. USA 80, 6436–6440 (1983)
    ADS CAS PubMed Google Scholar
  7. Arts, G. J., Fornerod, M. & Mattaj, I. W. Identification of a nuclear export receptor for tRNA. Curr. Biol. 8, 305–314 (1998)
    CAS PubMed Google Scholar
  8. Kutay, U. et al. Identification of a tRNA-specific nuclear export receptor. Mol. Cell 1, 359–369 (1998)
    CAS PubMed Google Scholar
  9. Hellmuth, K. et al. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol. Cell. Biol. 18, 6374–6386 (1998)
    CAS PubMed PubMed Central Google Scholar
  10. Cook, A., Bono, F., Jinek, M. & Conti, E. Structural biology of nucleocytoplasmic transport. Annu. Rev. Biochem. 76, 647–671 (2007)
    CAS PubMed Google Scholar
  11. Madrid, A. S. & Weis, K. Nuclear transport is becoming crystal clear. Chromosoma 115, 98–109 (2006)
    PubMed Google Scholar
  12. Calado, A., Treichel, N., Muller, E. C., Otto, A. & Kutay, U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 21, 6216–6224 (2002)
    CAS PubMed PubMed Central Google Scholar
  13. Shibata, S. et al. Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res. 34, 4711–4721 (2006)
    CAS PubMed PubMed Central Google Scholar
  14. Jovine, L., Djordjevic, S. & Rhodes, D. The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: cleavage by Mg2+ in 15-year old crystals. J. Mol. Biol. 301, 401–414 (2000)
    CAS PubMed Google Scholar
  15. Shi, H. & Moore, P. B. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6, 1091–1105 (2000)
    CAS PubMed PubMed Central Google Scholar
  16. Marvin, M. C. & Engelke, D. R. RNase P: increased versatility through protein complexity? RNA Biol. 6, 40–42 (2009)
    CAS PubMed PubMed Central Google Scholar
  17. Spath, B., Canino, G. & Marchfelder, A. tRNase Z: the end is not in sight. Cell. Mol. Life Sci. 64, 2404–2412 (2007)
    CAS PubMed Google Scholar
  18. Xiong, Y. & Steitz, T. A. A story with a good ending: tRNA 3′-end maturation by CCA-adding enzymes. Curr. Opin. Struct. Biol. 16, 12–17 (2006)
    CAS PubMed Google Scholar
  19. Lund, E. & Dahlberg, J. E. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282, 2082–2085 (1998)
    ADS CAS PubMed Google Scholar
  20. Bjork, G. R. et al. Transfer RNA modification. Annu. Rev. Biochem. 56, 263–287 (1987)
    CAS PubMed Google Scholar
  21. Iwata-Reuyl, D. An embarrassment of riches: the enzymology of RNA modification. Curr. Opin. Chem. Biol. 12, 126–133 (2008)
    CAS PubMed PubMed Central Google Scholar
  22. Arts, G. J., Kuersten, S., Romby, P., Ehresmann, B. & Mattaj, I. W. The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J. 17, 7430–7441 (1998)
    CAS PubMed PubMed Central Google Scholar
  23. Lipowsky, G. et al. Coordination of tRNA nuclear export with processing of tRNA. RNA 5, 539–549 (1999)
    CAS PubMed PubMed Central Google Scholar
  24. Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2–Ran·GppNHp. Nature 399, 230–237 (1999)
    ADS CAS PubMed Google Scholar
  25. Lee, S. J., Matsuura, Y., Liu, S. M. & Stewart, M. Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 693–696 (2005)
    ADS CAS PubMed Google Scholar
  26. Matsuura, Y. & Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature 432, 872–877 (2004)
    ADS CAS PubMed Google Scholar
  27. Monecke, T. et al. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324, 1087–1091 (2009)
    ADS CAS PubMed Google Scholar
  28. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl Acad. Sci. USA 91, 2587–2591 (1994)
    ADS CAS PubMed Google Scholar
  29. Bloomfield, V. A., Crothers, D. N. & Tinoco, I. Nucleic Acids: Structures, Properties and Functions Ch. 8 298–300 (Macmillan, 1999)
    Google Scholar
  30. Vetter, I. R., Arndt, A., Kutay, U., Gorlich, D. & Wittinghofer, A. Structural view of the Ran–Importin β interaction at 2.3 Å resolution. Cell 97, 635–646 (1999)
    CAS PubMed Google Scholar
  31. Andrade, M. A., Petosa, C., O’Donoghue, S. I., Muller, C. W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18 (2001)
    CAS PubMed Google Scholar
  32. Cingolani, G., Petosa, C., Weis, K. & Müller, C. W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999)
    ADS CAS PubMed Google Scholar
  33. Kuersten, S., Arts, G. J., Walther, T. C., Englmeier, L. & Mattaj, I. W. Steady-state nuclear localization of exportin-t involves RanGTP binding and two distinct nuclear pore complex interaction domains. Mol. Cell. Biol. 22, 5708–5720 (2002)
    CAS PubMed PubMed Central Google Scholar
  34. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998)
    CAS PubMed PubMed Central Google Scholar
  35. Fukuhara, N., Fernandez, E., Ebert, J., Conti, E. & Svergun, D. Conformational variability of nucleo-cytoplasmic transport factors. J. Biol. Chem. 279, 2176–2181 (2004)
    CAS PubMed Google Scholar
  36. Cook, A. et al. The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol. Cell 18, 355–367 (2005)
    CAS PubMed Google Scholar
  37. Dong, X., Biswas, A. & Chook, Y. M. Structural basis for assembly and disassembly of the CRM1 nuclear export complex. Nature Struct. Mol. Biol. 16, 558–560 (2009)
    CAS Google Scholar
  38. Moras, D. Structural and functional relationships between aminoacyl-tRNA synthetases. Trends Biochem. Sci. 17, 159–164 (1992)
    CAS PubMed Google Scholar
  39. LeMaster, D. M. & Richards, F. M. 1H–15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry 24, 7263–7268 (1985)
    CAS PubMed Google Scholar
  40. Walker, P. A. et al. Efficient and rapid affinity purification of proteins using recombinant fusion proteases. Biotechnology 12, 601–605 (1994)
    CAS PubMed Google Scholar
  41. Doublie, S. et al. Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. FEBS Lett. 384, 219–221 (1996)
    CAS PubMed Google Scholar
  42. Leslie, A. G. W. in Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography No. 26 (CCP4, 1992)
    Google Scholar
  43. Collaborative Computational Project, Number 4 The _CCP_4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Google Scholar
  44. Broennimann et al. The PILATUS 1M detector. J. Synchrotron Radiat. 13, 120–130 (2006)
    CAS PubMed Google Scholar
  45. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993)
    CAS Google Scholar
  46. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)
    PubMed Google Scholar
  47. de La Fortelle, E. & Bricogne, G. in Macromolecular Crystallography Part A (eds Sweet, R. M. & Carter, C. W. J.) 472–494 (Academic, 1997)
    Google Scholar
  48. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)
    CAS PubMed PubMed Central Google Scholar
  49. Stein, N. CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J. Appl. Crystallogr. 41, 641–643 (2008)
    CAS Google Scholar
  50. Jones, T. A., Bergdoll, M. & Kjekdgaard, M. in Crystallographic and Modeling Methods in Molecular Design (eds Bugg, C. & Ealick, S.) 189–195 (Springer-Verlag, 1990)
    Google Scholar
  51. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    CAS PubMed Google Scholar
  52. Davis, I. W., Murray, L. W., Richardson, J. S. & Richardson, D. C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004)
    CAS PubMed PubMed Central Google Scholar
  53. Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302 (2005)
    ADS CAS PubMed PubMed Central Google Scholar

Download references