Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor (original) (raw)
Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science318, 1266–1273 (2007) ArticleADSCAS Google Scholar
Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science318, 1258–1265 (2007) ArticleADSCAS Google Scholar
Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature450, 383–387 (2007) ArticleADSCAS Google Scholar
Jaakola, V. P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science322, 1211–1217 (2008) ArticleADSCAS Google Scholar
Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature454, 486–491 (2008) ArticleADSCAS Google Scholar
Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci.28, 397–406 (2007) ArticleCAS Google Scholar
Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science274, 768–770 (1996) ArticleADSCAS Google Scholar
Altenbach, C., Kusnetzow, A. K., Ernst, O. P., Hofmann, K. P. & Hubbell, W. L. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl Acad. Sci. USA105, 7439–7444 (2008) ArticleADSCAS Google Scholar
Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature454, 183–187 (2008) ArticleADSCAS Google Scholar
Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature455, 497–502 (2008) ArticleADSCAS Google Scholar
Ghanouni, P. et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β2 adrenergic receptor. J. Biol. Chem.276, 24433–24436 (2001) ArticleCAS Google Scholar
Swaminath, G. et al. Probing the β2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem.280, 22165–22171 (2005) ArticleCAS Google Scholar
Yao, X. et al. Coupling ligand structure to specific conformational switches in the β2-adrenoceptor. Nature Chem. Biol.2, 417–422 (2006) ArticleCAS Google Scholar
Ahuja, S. et al. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nature Struct. Mol. Biol.16, 168–175 (2009) ArticleCAS Google Scholar
Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Rev. Drug Discov.8, 41–54 (2009) ArticleCAS Google Scholar
Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci.25, 366–428 (1995) ArticleCAS Google Scholar
Nygaard, R., Frimurer, T. M., Holst, B., Rosenkilde, M. M. & Schwartz, T. W. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci.30, 249–259 (2009) ArticleCAS Google Scholar
Zhang, M. & Vogel, H. J. Determination of the side chain p_K_ a values of the lysine residues in calmodulin. J. Biol. Chem.268, 22420–22428 (1993) CASPubMed Google Scholar
Tugarinov, V., Hwang, P. M., Ollerenshaw, J. E. & Kay, L. E. Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc.125, 10420–10428 (2003) ArticleCAS Google Scholar
Jentoft, J. E., Jentoft, N., Gerken, T. A. & Dearborn, D. G. 13C NMR studies of ribonuclease A methylated with [13C]formaldehyde. J. Biol. Chem.254, 4366–4370 (1979) CASPubMed Google Scholar
Gerken, T. A., Jentoft, J. E., Jentoft, N. & Dearborn, D. G. Intramolecular interactions of amino groups in 13C reductively methylated hen egg-white lysozyme. J. Biol. Chem.257, 2894–2900 (1982) CASPubMed Google Scholar
Sherry, A. D. & Teherani, J. Physical studies of 13C-methylated concanavalin A. pH- and Co2+-induced nuclear magnetic resonance shifts. J. Biol. Chem.258, 8663–8669 (1983) CASPubMed Google Scholar
Abraham, S. J., Hoheisel, S. & Gaponenko, V. Detection of protein-ligand interactions by NMR using reductive methylation of lysine residues. J. Biomol. NMR42, 143–148 (2008) ArticleCAS Google Scholar
Hanson, M. A. et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure16, 897–905 (2008) ArticleCAS Google Scholar
Kumar, S. & Nussinov, R. Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys. J.83, 1595–1612 (2002) ArticleADSCAS Google Scholar
Baneres, J. L. et al. Molecular characterization of a purified 5-HT4 receptor: a structural basis for drug efficacy. J. Biol. Chem.280, 20253–20260 (2005) ArticleCAS Google Scholar
Wieland, K., Zuurmond, H. M., Krasel, C., Ijzerman, A. P. & Lohse, M. J. Involvement of Asn-293 in stereospecific agonist recognition and in activation of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA93, 9276–9281 (1996) ArticleADSCAS Google Scholar
Elling, C. E. et al. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation. J. Biol. Chem.281, 17337–17346 (2006) ArticleCAS Google Scholar
Schwartz, T. W., Frimurer, T. M., Holst, B., Rosenkilde, M. M. & Elling, C. E. Molecular mechanism of 7TM receptor activation—a global toggle switch model. Annu. Rev. Pharmacol. Toxicol.46, 481–519 (2006) ArticleCAS Google Scholar
Hubbard, S. J., Campbell, S. F. & Thornton, J. M. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J. Mol. Biol.220, 507–530 (1991) ArticleCAS Google Scholar
Kobilka, B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem.231, 269–271 (1995) ArticleCAS Google Scholar
Yao, X. J. et al. The effect of ligand efficacy on the formation and stability of a GPCR–G protein complex. Proc. Natl Acad. Sci. USA106, 9501–9506 (2009) ArticleADSCAS Google Scholar
Tota, M. R. & Strader, C. D. Characterization of the binding domain of the β-adrenergic receptor with the fluorescent antagonist carazolol. Evidence for a buried ligand binding site. J. Biol. Chem.265, 16891–16897 (1990) CASPubMed Google Scholar
Baker, J. G. The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. Br. J. Pharmacol.144, 317–322 (2005) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. A276, 307–326 (1997) ArticleCAS Google Scholar
Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticleCAS Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002) Article Google Scholar