Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism (original) (raw)

References

  1. Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila . Nature 454, 1014–1018 (2008)
    Article ADS CAS Google Scholar
  2. Wiltschko, W. & Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191, 675–693 (2005)
    Article Google Scholar
  3. Lohmann, K. J., Lohmann, C. M. F. & Putman, N. F. Magnetic maps in animals: nature’s GPS. J. Exp. Biol. 210, 3697–3705 (2007)
    Article Google Scholar
  4. Wiltschko, R., Ritz, T., Stapput, K., Thalau, P. & Wiltschko, W. Two different types of light-dependent responses to magnetic fields in birds. Curr. Biol. 15, 1518–1523 (2005)
    Article CAS Google Scholar
  5. Phillips, J. B. & Borland, S. C. Wavelength specific effects of light on magnetic compass orientation of the eastern red-spotted newt Notophthalmus viridescens . Ethol. Ecol. Evol. 4, 33–42 (1992)
    Article Google Scholar
  6. Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009)
    Article ADS CAS Google Scholar
  7. Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000)
    Article CAS Google Scholar
  8. Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature 453, 387–390 (2008)
    Article ADS CAS Google Scholar
  9. Mouritsen, H. & Ritz, T. Magnetoreception and its use in bird navigation. Curr. Opin. Neurobiol. 15, 406–414 (2005)
    Article CAS Google Scholar
  10. Zhu, H. S. et al. The two CRYs of the butterfly. Curr. Biol. 15, R953–R954 (2005)
    Article CAS Google Scholar
  11. Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007)
    Article CAS Google Scholar
  12. Öztürk, N., Song, S. H., Selby, C. P. & Sancar, A. Animal type 1 cryptochromes: analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283, 3256–3263 (2008)
    Article Google Scholar
  13. vanVickle-Chavez, S. J. & van Gelder, R. N. Action spectrum of Drosophila cryptochrome. J. Biol. Chem. 282, 10561–10566 (2007)
    Article CAS Google Scholar
  14. Ritz, T., Dommer, D. H. & Phillips, J. B. Shedding light on vertebrate magnetoreception. Neuron 34, 503–506 (2002)
    Article CAS Google Scholar
  15. Kaneko, M. & Hall, J. C. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol. 422, 66–94 (2000)
    Article CAS Google Scholar
  16. Zhu, H. S. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6, 138–155 (2008)
    Article CAS Google Scholar
  17. Tu, D. C., Batten, M. L., Palczewski, K. & Van Gelder, R. N. Nonvisual photoreception in the chick iris. Science 306, 129–131 (2004)
    Article ADS CAS Google Scholar
  18. Hoang, N. et al. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 6, 1559–1569 (2008)
    CAS Google Scholar
  19. Berndt, A. et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 282, 13011–13021 (2007)
    Article CAS Google Scholar
  20. Song, S. H. et al. Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly. J. Biol. Chem. 282, 17608–17612 (2007)
    Article CAS Google Scholar
  21. Solov’yov, I. A. & Schulten, K. Magnetoreception through cryptochrome may involve superoxide. Biophys. J. 96, 4804–4813 (2009)
    Article ADS Google Scholar
  22. Hogben, H. J., Efimova, O., Wagner-Rundell, N., Timmel, C. R. & Hore, P. J. Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chem. Phys. Lett. 480, 118–122 (2009)
    Article ADS CAS Google Scholar
  23. Öztürk, N. et al. Structure and function of animal cryptochromes. Cold Spring Harb. Symp. Quant. Biol. 72, 119–131 (2007)
    Article Google Scholar
  24. Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of _Drosophila_’s circadian clock. PLoS Biol. 7, 813–819 (2009)
    Article Google Scholar
  25. Stanewsky, R. Genetic analysis of the circadian system in Drosophila melanogaster and mammals. J. Neurobiol. 54, 111–147 (2003)
    Article CAS Google Scholar
  26. Rutila, J. E. et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805–814 (1998)
    Article CAS Google Scholar
  27. Sheeba, V., Gu, H., Sharma, V. K., O’Dowd, D. K. & Holmes, T. C. Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J. Neurophysiol. 99, 976–988 (2008)
    Article Google Scholar
  28. Reppert, S. M. A colorful model of the circadian clock. Cell 124, 233–236 (2006)
    Article CAS Google Scholar
  29. Emery, P., So, W. V., Kaneko, M., Hall, J. C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679 (1998)
    Article CAS Google Scholar

Download references