Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism (original) (raw)
References
Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila . Nature454, 1014–1018 (2008) ArticleADSCAS Google Scholar
Wiltschko, W. & Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A191, 675–693 (2005) Article Google Scholar
Lohmann, K. J., Lohmann, C. M. F. & Putman, N. F. Magnetic maps in animals: nature’s GPS. J. Exp. Biol.210, 3697–3705 (2007) Article Google Scholar
Wiltschko, R., Ritz, T., Stapput, K., Thalau, P. & Wiltschko, W. Two different types of light-dependent responses to magnetic fields in birds. Curr. Biol.15, 1518–1523 (2005) ArticleCAS Google Scholar
Phillips, J. B. & Borland, S. C. Wavelength specific effects of light on magnetic compass orientation of the eastern red-spotted newt Notophthalmus viridescens . Ethol. Ecol. Evol.4, 33–42 (1992) Article Google Scholar
Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA106, 353–360 (2009) ArticleADSCAS Google Scholar
Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J.78, 707–718 (2000) ArticleCAS Google Scholar
Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature453, 387–390 (2008) ArticleADSCAS Google Scholar
Mouritsen, H. & Ritz, T. Magnetoreception and its use in bird navigation. Curr. Opin. Neurobiol.15, 406–414 (2005) ArticleCAS Google Scholar
Zhu, H. S. et al. The two CRYs of the butterfly. Curr. Biol.15, R953–R954 (2005) ArticleCAS Google Scholar
Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol.24, 948–955 (2007) ArticleCAS Google Scholar
Öztürk, N., Song, S. H., Selby, C. P. & Sancar, A. Animal type 1 cryptochromes: analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem.283, 3256–3263 (2008) Article Google Scholar
vanVickle-Chavez, S. J. & van Gelder, R. N. Action spectrum of Drosophila cryptochrome. J. Biol. Chem.282, 10561–10566 (2007) ArticleCAS Google Scholar
Ritz, T., Dommer, D. H. & Phillips, J. B. Shedding light on vertebrate magnetoreception. Neuron34, 503–506 (2002) ArticleCAS Google Scholar
Kaneko, M. & Hall, J. C. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol.422, 66–94 (2000) ArticleCAS Google Scholar
Zhu, H. S. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol.6, 138–155 (2008) ArticleCAS Google Scholar
Tu, D. C., Batten, M. L., Palczewski, K. & Van Gelder, R. N. Nonvisual photoreception in the chick iris. Science306, 129–131 (2004) ArticleADSCAS Google Scholar
Hoang, N. et al. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol.6, 1559–1569 (2008) CAS Google Scholar
Berndt, A. et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem.282, 13011–13021 (2007) ArticleCAS Google Scholar
Song, S. H. et al. Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly. J. Biol. Chem.282, 17608–17612 (2007) ArticleCAS Google Scholar
Solov’yov, I. A. & Schulten, K. Magnetoreception through cryptochrome may involve superoxide. Biophys. J.96, 4804–4813 (2009) ArticleADS Google Scholar
Hogben, H. J., Efimova, O., Wagner-Rundell, N., Timmel, C. R. & Hore, P. J. Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chem. Phys. Lett.480, 118–122 (2009) ArticleADSCAS Google Scholar
Öztürk, N. et al. Structure and function of animal cryptochromes. Cold Spring Harb. Symp. Quant. Biol.72, 119–131 (2007) Article Google Scholar
Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of _Drosophila_’s circadian clock. PLoS Biol.7, 813–819 (2009) Article Google Scholar
Stanewsky, R. Genetic analysis of the circadian system in Drosophila melanogaster and mammals. J. Neurobiol.54, 111–147 (2003) ArticleCAS Google Scholar
Rutila, J. E. et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell93, 805–814 (1998) ArticleCAS Google Scholar
Sheeba, V., Gu, H., Sharma, V. K., O’Dowd, D. K. & Holmes, T. C. Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J. Neurophysiol.99, 976–988 (2008) Article Google Scholar
Reppert, S. M. A colorful model of the circadian clock. Cell124, 233–236 (2006) ArticleCAS Google Scholar
Emery, P., So, W. V., Kaneko, M., Hall, J. C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell95, 669–679 (1998) ArticleCAS Google Scholar