The architecture of respiratory complex I (original) (raw)
References
Walker, J. E. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q. Rev. Biophys.25, 253–324 (1992) ArticleCASPubMed Google Scholar
Yagi, T. & Matsuno-Yagi, A. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry42, 2266–2274 (2003) ArticleCASPubMed Google Scholar
Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem.75, 69–92 (2006) ArticleCASPubMed Google Scholar
Ohnishi, T. Iron-sulfur clusters/semiquinones in complex I. Biochim. Biophys. Acta1364, 186–206 (1998) ArticleCASPubMed Google Scholar
Sazanov, L. A. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry46, 2275–2288 (2007) ArticleCASPubMed Google Scholar
Schapira, A. H. Human complex I defects in neurodegenerative diseases. Biochim. Biophys. Acta1364, 261–270 (1998) ArticleCASPubMed Google Scholar
Dawson, T. M. & Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson’s disease. Science302, 819–822 (2003) ArticleADSCASPubMed Google Scholar
Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell120, 483–495 (2005) ArticleCASPubMed Google Scholar
Carroll, J. et al. Bovine complex I is a complex of 45 different subunits. J. Biol. Chem.281, 32724–32727 (2006) ArticleCASPubMed Google Scholar
Clason, T. et al. The structure of eukaryotic and prokaryotic complex I. J. Struct. Biol.169, 81–88 (2010) ArticleADSCASPubMed Google Scholar
Morgan, D. J. & Sazanov, L. A. Three-dimensional structure of respiratory complex I from Escherichia coli in ice in the presence of nucleotides. Biochim. Biophys. Acta1777, 711–718 (2008) ArticleCASPubMed Google Scholar
Sazanov, L. A. & Hinchliffe, P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus . Science311, 1430–1436 (2006) ArticleADSCASPubMed Google Scholar
Fearnley, I. M. & Walker, J. E. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim. Biophys. Acta1140, 105–134 (1992) ArticleCASPubMed Google Scholar
Mathiesen, C. & Hagerhall, C. Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim. Biophys. Acta1556, 121–132 (2002) ArticleCASPubMed Google Scholar
Friedrich, T. Complex I: a chimaera of a redox and conformation-driven proton pump? J. Bioenerg. Biomembr.33, 169–177 (2001) ArticleCASPubMed Google Scholar
Sazanov, L. A., Carroll, J., Holt, P., Toime, L. & Fearnley, I. M. A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem.278, 19483–19491 (2003) ArticleCASPubMed Google Scholar
Guénebaut, V., Schlitt, A., Weiss, H., Leonard, K. & Friedrich, T. Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol.276, 105–112 (1998) ArticlePubMed Google Scholar
Baranova, E. A., Holt, P. J. & Sazanov, L. A. Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 Å resolution. J. Mol. Biol.366, 140–154 (2007) ArticleCASPubMed Google Scholar
Kao, M. C., Di Bernardo, S., Matsuno-Yagi, A. & Yagi, T. Characterization of the membrane domain Nqo11 subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans . Biochemistry41, 4377–4384 (2002) ArticleCASPubMed Google Scholar
Kao, M. C., Di Bernardo, S., Matsuno-Yagi, A. & Yagi, T. Characterization and topology of the membrane domain Nqo10 subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans . Biochemistry42, 4534–4543 (2003) ArticleCASPubMed Google Scholar
Bernardo, S. D., Yano, T. & Yagi, T. Exploring the membrane domain of the reduced nicotinamide adenine dinucleotide-quinone oxidoreductase of Paracoccus denitrificans: characterization of the NQO7 subunit. Biochemistry39, 9411–9418 (2000) ArticleCASPubMed Google Scholar
Mamedova, A. A., Holt, P. J., Carroll, J. & Sazanov, L. A. Substrate-induced conformational change in bacterial complex I. J. Biol. Chem.279, 23830–23836 (2004) ArticleCASPubMed Google Scholar
Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol.159, 261–267 (2007) ArticleCASPubMed Google Scholar
Torres-Bacete, J., Sinha, P. K., Castro-Guerrero, N., Matsuno-Yagi, A. & Yagi, T. Features of subunit NuoM (ND4) in Escherichia coli NDH-1: topology and implication of conserved Glu144 for coupling site 1. J. Biol. Chem.284, 33062–33069 (2009) ArticleCASPubMedPubMed Central Google Scholar
Holt, P. J., Morgan, D. J. & Sazanov, L. A. The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J. Biol. Chem.278, 43114–43120 (2003) ArticleCASPubMed Google Scholar
Baranova, E. A., Morgan, D. J. & Sazanov, L. A. Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J. Struct. Biol.159, 238–242 (2007) ArticleCASPubMed Google Scholar
Kao, M. C., Nakamaru-Ogiso, E., Matsuno-Yagi, A. & Yagi, T. Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from Escherichia coli . Biochemistry44, 9545–9554 (2005) ArticleCASPubMed Google Scholar
Roth, R. & Hagerhall, C. Transmembrane orientation and topology of the NADH:quinone oxidoreductase putative quinone binding subunit NuoH. Biochim. Biophys. Acta1504, 352–362 (2001) ArticleCASPubMed Google Scholar
Kao, M. C., Matsuno-Yagi, A. & Yagi, T. Subunit proximity in the H+-translocating NADH-quinone oxidoreductase probed by zero-length cross-linking. Biochemistry43, 3750–3755 (2004) ArticleCASPubMed Google Scholar
Murai, M., Sekiguchi, K., Nishioka, T. & Miyoshi, H. Characterization of the inhibitor binding site in mitochondrial NADH-ubiquinone oxidoreductase by photoaffinity labeling using a quinazoline-type inhibitor. Biochemistry48, 688–698 (2009) ArticleCASPubMed Google Scholar
Sekiguchi, K., Murai, M. & Miyoshi, H. Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. Biochim. Biophys. Acta1787, 1106–1111 (2009) ArticleCASPubMed Google Scholar
Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature402, 47–52 (1999) ArticleADSCASPubMed Google Scholar
Yano, T., Dunham, W. R. & Ohnishi, T. Characterization of the ΔμH+-sensitive ubisemiquinone species (SQNf) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I. Biochemistry44, 1744–1754 (2005) ArticleCASPubMed Google Scholar
Nakamaru-Ogiso, E., Sakamoto, K., Matsuno-Yagi, A., Miyoshi, H. & Yagi, T. The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry42, 746–754 (2003) ArticleCASPubMed Google Scholar
Gong, X. et al. The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli . J. Biol. Chem.278, 25731–25737 (2003) ArticleCASPubMed Google Scholar
Berrisford, J. M., Thompson, C. J. & Sazanov, L. A. Chemical and NADH-induced, ROS-dependent, cross-linking between subunits of complex I from Escherichia coli and Thermus thermophilus . Biochemistry47, 10262–10270 (2008) ArticleCASPubMed Google Scholar
Belogrudov, G. & Hatefi, Y. Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochemistry33, 4571–4576 (1994) ArticleCASPubMed Google Scholar
Gondal, J. A. & Anderson, W. M. The molecular morphology of bovine heart mitochondrial NADH-ubiquinone reductase. Native disulfide-linked subunits and rotenone-induced conformational changes. J. Biol. Chem.260, 12690–12694 (1985) CASPubMed Google Scholar
Verkhovskaya, M. L., Belevich, N., Euro, L., Wikstrom, M. & Verkhovsky, M. I. Real-time electron transfer in respiratory complex I. Proc. Natl Acad. Sci. USA105, 3763–3767 (2008) ArticleADSCASPubMedPubMed Central Google Scholar
Euro, L., Belevich, G., Verkhovsky, M. I., Wikstrom, M. & Verkhovskaya, M. Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Biochim. Biophys. Acta1777, 1166–1172 (2008) ArticleCASPubMed Google Scholar
Torres-Bacete, J., Nakamaru-Ogiso, E., Matsuno-Yagi, A. & Yagi, T. Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities. J. Biol. Chem.282, 36914–36922 (2007) ArticleCASPubMed Google Scholar
Kervinen, M., Patsi, J., Finel, M. & Hassinen, I. E. A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry43, 773–781 (2004) ArticleCASPubMed Google Scholar
Kajiyama, Y., Otagiri, M., Sekiguchi, J., Kudo, T. & Kosono, S. The MrpA, MrpB and MrpD subunits of the Mrp antiporter complex in Bacillus subtilis contain membrane-embedded and essential acidic residues. Microbiology155, 2137–2147 (2009) ArticleCASPubMed Google Scholar
Sazanov, L. A., Carroll, J., Holt, P., Toime, L. & Fearnley, I. M. A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH-ubiquinone oxidoreductase (Complex I). J. Biol. Chem.278, 19483–19491 (2003) ArticleCASPubMed Google Scholar
Hinchliffe, P., Carroll, J. & Sazanov, L. A. Identification of a novel subunit of respiratory complex I from Thermus thermophilus . Biochemistry45, 4413–4420 (2006) ArticleCASPubMed Google Scholar
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD . Acta Crystallogr. D58, 1772–1779 (2002) ArticlePubMedCAS Google Scholar
de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol.276, 472–494 (1997) ArticleCASPubMed Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002) ArticleMathSciNetPubMedCAS Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst.40, 658–674 (2007) ArticleCAS Google Scholar
Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol.277, 173–208 (1997) ArticleCASPubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) ArticleCASPubMed Google Scholar
Rudolph, M. G., Wingren, C., Crowley, M. P., Chien, Y. H. & Wilson, I. A. Combined pseudo-merohedral twinning, non-crystallographic symmetry and pseudo-translation in a monoclinic crystal form of the γδ T-cell ligand T10. Acta Crystallogr. D60, 656–664 (2004) ArticlePubMedCAS Google Scholar
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics23, 2947–2948 (2007) ArticleCASPubMed Google Scholar
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol.305, 567–580 (2001) ArticleCASPubMed Google Scholar
McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure prediction server. Bioinformatics16, 404–405 (2000) ArticleCASPubMed Google Scholar