Single-cell NF-κB dynamics reveal digital activation and analogue information processing (original) (raw)

References

  1. Hayden, M. S., West, A. P. & Ghosh, S. NF-κB and the immune response. Oncogene 25, 6758–6780 (2006)
    Article CAS Google Scholar
  2. Cheong, R. et al. Transient IκB kinase activity mediates temporal NF-κB dynamics in response to a wide range of tumor necrosis factor-α doses. J. Biol. Chem. 281, 2945–2950 (2006)
    Article CAS Google Scholar
  3. Gómez-Sjöberg, R., Leyrat, A. A., Pirone, D. M., Chen, C. S. & Quake, S. R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79, 8557–8563 (2007)
    Article Google Scholar
  4. Batchelor, E., Loewer, A. & Lahav, G. The ups and downs of p53: understanding protein dynamics in single cells. Nature Rev. Cancer 9, 371–377 (2009)
    Article CAS Google Scholar
  5. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009)
    Article ADS CAS Google Scholar
  6. Lahav, G. et al. Dynamics of the p53-mdm2 feedback loop in individual cells. Nature Genet. 36, 147–150 (2004)
    Article CAS Google Scholar
  7. Covert, M. W., Leung, T. H., Gaston, J. E. & Baltimore, D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309, 1854–1857 (2005)
    Article ADS CAS Google Scholar
  8. Lee, T. K. et al. A noisy paracrine signal determines the cellular NF-κB response to LPS. Sci. Signal. 2, 93 (2009)
    Google Scholar
  9. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008)
    Article ADS CAS Google Scholar
  10. Hoffmann, A. & Baltimore, D. Circuitry of nuclear factor κB signaling. Immunol. Rev. 210, 171–186 (2006)
    Article Google Scholar
  11. Courtois, G. & Gilmore, T. D. Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25, 6831–6843 (2006)
    Article CAS Google Scholar
  12. Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004)
    Article ADS CAS Google Scholar
  13. Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science 324, 242–246 (2009)
    Article ADS CAS Google Scholar
  14. St, Pierre, F. & Endy, D. Determination of cell-fate selection during phage lambda infection. Proc. Natl Acad. Sci. USA 105, 20705–20710 (2008)
    Article ADS Google Scholar
  15. Snijder, B. et al. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520–523 (2009)
    Article ADS CAS Google Scholar
  16. Elowitz, M., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)
    Article ADS CAS Google Scholar
  17. Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002)
    Article ADS CAS Google Scholar
  18. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nature Immunol. 10, 281–288 (2009)
    Article CAS Google Scholar
  19. Giorgetti, L. et al. Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Mol. Cell 37, 418–428 (2010)
    Article CAS Google Scholar
  20. Bhat, S., Hermann, J., Armishaw, P., Corbisier, P. & Emslie, K. R. Single molecule detection in nanofluidic digital array allows accurate measurement of DNA copy number. Anal. Bioanal. Chem. 394, 457–467 (2009)
    Article CAS Google Scholar
  21. Wilson, J. W., Catherine, B. & Christopher, S. (eds) in Apoptosis Genes (Springer, 1999)
    Book Google Scholar
  22. Lee, E. G. et al. Failure to regulate TNF-α-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000)
    Article ADS CAS Google Scholar
  23. Hutti, J. E. et al. IκB kinase beta phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol. Cell. Biol. 27, 7451–7461 (2007)
    Article CAS Google Scholar
  24. Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B. & Kimmel, M. Mathematical model of NF-κB regulatory module. J. Theor. Biol. 228, 195–215 (2004)
    Article MathSciNet CAS Google Scholar
  25. Lipniacki, T., Puszynski, K., Paszek, P., Brasier, A. R. & Kimmel, M. Single TNF-α trimers mediating NF-κB activation: Stochastic robustness of NF-κB signaling. BMC Bioinformatics 8, 376 (2007)
    Article Google Scholar
  26. Delhase, M., Hayakawa, M., Chen, Y. & Karin, M. Positive and negative regulation of IκB kinase activity through IKK subunit phosphorylation. Science 284, 309–313 (1998)
    Article ADS Google Scholar
  27. Chen, Y.-M. et al. Dual regulation of TNF-α induced CCL2/monocyte chemoattractant protein-1 expression in vascular smooth muscle cells by NF-κB and AP-1: modulation by type III phosphodiesterase inhibition. J. Pharmacol. Exp. Ther. 103, 06262 (2004)
    Google Scholar
  28. Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484–1486 (2006)
    Article CAS Google Scholar

Download references